Sniffing Detection Based on Network Traffic Probing and Machine Learning

被引:10
|
作者
Gregorczyk, Marcin [1 ]
Zorawski, Piotr [1 ]
Nowakowski, Piotr [1 ]
Cabaj, Krzysztof [2 ]
Mazurczyk, Wojciech [2 ]
机构
[1] Warsaw Univ Technol, Inst Telecommun, PL-00665 Warsaw, Poland
[2] Warsaw Univ Technol, Inst Comp Sci, PL-00665 Warsaw, Poland
基金
欧盟地平线“2020”;
关键词
Security; Machine learning; Protocols; Tools; Internet; Software; AI; artificial intelligence; ML; machine learning; network security; sniffing; threat detection;
D O I
10.1109/ACCESS.2020.3016076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cyber attacks are on the rise and each day cyber criminals are developing more and more sophisticated methods to compromise the security of their targets. Sniffing is one of the most important techniques that enables the attacker to collect information on the vulnerabilities of the devices, protocols and applications that can be exploited within the targeted network. It relies mainly on passively analyzing the traffic exchanged within the network, and due to its nature, such an activity is difficult to discover. That is why, in this article, we first revisit existing techniques and tools that can be used to perform sniffing as well as the corresponding mitigation methods. Based on this background, we propose a novel measurement-based detection method that infers whether the sniffing software is active on the suspected machine by network traffic probing and machine learning techniques. The presented experimental results prove that the proposed solution is effective.
引用
收藏
页码:149255 / 149269
页数:15
相关论文
共 50 条
  • [11] Network Traffic Anomaly Detection using Machine Learning Approaches
    Limthong, Kriangkrai
    Tawsook, Thidarat
    2012 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2012, : 542 - 545
  • [12] Anomaly detection in network traffic using extreme learning machine
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    2016 IEEE 10TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2016, : 418 - 421
  • [13] Unsupervised Machine Learning for Anomaly Detection in Synchrophasor Network Traffic
    Donner, Phillip
    Leger, Aaron St.
    Blaine, Raymond
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,
  • [14] Investigation of Machine Learning Based Network Traffic Classification
    Fan, Zhong
    Liu, Ran
    2017 INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2017, : 1 - 6
  • [15] Machine learning based network traffic classification: a survey
    Shen, Y. (shenyi_1979@njau.edu.cn), 2012, Binary Information Press, Flat F 8th Floor, Block 3, Tanner Garden, 18 Tanner Road, Hong Kong (09):
  • [16] Encrypted network traffic classification based on machine learning
    Elmaghraby, Reham T.
    Aziem, Nada M. Abdel
    Sobh, Mohammed A.
    Bahaa-Eldin, Ayman M.
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (02)
  • [17] Extreme Learning Machine based Traffic Sign Detection
    Huang, Zhiyong
    Yu, Yuanlong
    Ye, Shaozhen
    Liu, Huaping
    PROCESSING OF 2014 INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INFORMATION INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2014,
  • [18] Deep Learning Network Intrusion Detection Based on Network Traffic
    Wang, Hanyang
    Zhou, Sirui
    Li, Honglei
    Hu, Juan
    Du, Xinran
    Zhou, Jinghui
    He, Yunlong
    Fu, Fa
    Yang, Houqun
    ARTIFICIAL INTELLIGENCE AND SECURITY, ICAIS 2022, PT III, 2022, 13340 : 194 - 207
  • [19] Sniffing and Chaffing Network Traffic in Stepping-Stone Intrusion Detection
    Yang, Jianhua
    Zhang, Yongzhong
    King, Robert
    Tolbert, Tim
    2018 32ND INTERNATIONAL CONFERENCE ON ADVANCED INFORMATION NETWORKING AND APPLICATIONS WORKSHOPS (WAINA), 2018, : 515 - 520
  • [20] Investigating the Effect of Traffic Sampling on Machine Learning-Based Network Intrusion Detection Approaches
    Alikhanov, Jumabek
    Jang, Rhongho
    Abuhamad, Mohammed
    Mohaisen, David
    Nyang, Daehun
    Noh, Youngtae
    IEEE ACCESS, 2022, 10 : 5801 - 5823