New congruences on multiple harmonic sums and Bernoulli numbers

被引:0
|
作者
Wang, Liuquan [1 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Hubei, Peoples R China
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
基金
中国国家自然科学基金;
关键词
congruences; Bernoulli numbers; multiple harmonic sums; CURIOUS CONGRUENCE;
D O I
10.5486/PMD.2020.8768
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-n denote the set of positive integers which are prime to n. Let B-n be the n-th Bernoulli number. For any prime p >= 11 and integer r >= 2, we prove that Sigma(l1+l2+ ... +l6 = pr l1, ... ,l6 is an element of Pp) 1/l(1)l(2)l(3)l(4)l(5)l(6) - 5!/18p(r-1) B-p-3(2) (mod p(r)). This extends a family of curious congruences. We also obtain other interesting congruences involving multiple harmonic sums and Bernoulli numbers.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 50 条
  • [1] BERNOULLI NUMBERS AND CONGRUENCES FOR HARMONIC SUMS
    Xia, Binzhou
    Cai, Tianxin
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (04) : 849 - 855
  • [2] NEW CONGRUENCES FOR THE BERNOULLI NUMBERS
    TANNER, JW
    WAGSTAFF, SS
    [J]. MATHEMATICS OF COMPUTATION, 1987, 48 (177) : 341 - 350
  • [3] Some congruences on harmonic numbers and binomial sums
    Bing He
    [J]. Periodica Mathematica Hungarica, 2017, 74 : 67 - 72
  • [4] Some congruences on harmonic numbers and binomial sums
    He, Bing
    [J]. PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (01) : 67 - 72
  • [5] APPLICATIONS OF CLASS NUMBERS AND BERNOULLI NUMBERS TO HARMONIC TYPE SUMS
    Goral, Haydar
    Sertbas, Doga Can
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2021, 58 (06) : 1463 - 1481
  • [6] CONGRUENCES INVOLVINlG SUMS OF HARMONIC NUMBERS AND BINOMIAL COEFFICIENTS
    Elkhiri, Laid
    Mihoubi, Miloud
    Derbal, Abdellah
    [J]. MATHEMATICA MONTISNIGRI, 2020, 47 : 15 - 21
  • [7] Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions
    Kim, Daeyeoul
    Kim, Aeran
    Sankaranarayanan, Ayyadurai
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [8] Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions
    Daeyeoul Kim
    Aeran Kim
    Ayyadurai Sankaranarayanan
    [J]. Journal of Inequalities and Applications, 2013
  • [9] Congruences involving alternating multiple harmonic sums
    Tauraso, Roberto
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [10] Congruences for Bernoulli numbers and Bernoulli polynomials
    Sun, ZH
    [J]. DISCRETE MATHEMATICS, 1997, 163 (1-3) : 153 - 163