Optimization of PID Parameters Based on Improved Particle-Swarm-Optimization

被引:1
|
作者
Fan, Xinming [1 ,2 ]
Cao, Jianzhong [1 ,2 ]
Yang, Hongtao [1 ,2 ]
Dong, Xiaokun [1 ,2 ]
Liu, Chen [1 ,2 ]
Gong, Zhendong [1 ,2 ]
Wu, Qingquan [1 ,2 ]
机构
[1] Chinese Acad Sci, Xian Inst Opt & Precis Mech, Xian 710119, Shanxi Province, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
关键词
Particle Swarm Optimization; PID controller; parameters tuning; System simulation;
D O I
10.1109/ISCC-C.2013.99
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Because the PID parameter settings obtained by classical method fail to achieve the best control performances, this paper proposes an improved particle swarm optimization (IPSO) algorithm with non-linear inertial weight changes and border buffer. Unlike the original PSO, the inertial weight changes instead of linearly. In addition, we provide a border buffer to the slopping-over particles, making them to fall in the explored space of optima to enhance the diversity of the particle swarm. The simulation experiments show that the system whose parameters are optimized by IPSO has better performances. Meanwhile, it proves the effectiveness of the improved particle swarm optimization.
引用
收藏
页码:393 / 397
页数:5
相关论文
共 50 条
  • [41] Optimal Overcurrent Relays Coordination using Particle-Swarm-Optimization Algorithm
    Asadi, M. R.
    Kouhsari, S. M.
    [J]. 2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1244 - 1249
  • [42] Parameters Optimization for Extended-range Electric Vehicle Based on Improved Chaotic Particle Swarm Optimization
    Jiang, Yongchen
    Lin, Cheng
    Cao, Wanke
    [J]. INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2016, 9 (09): : 1 - 10
  • [43] Research on an Optimization Method for Injection-Production Parameters Based on an Improved Particle Swarm Optimization Algorithm
    Dong, Yukun
    Zhang, Yu
    Liu, Fubin
    Zhu, Zhengjun
    [J]. ENERGIES, 2022, 15 (08)
  • [44] Optimization of Process Parameters in Process Manufacturing Based on Ensemble Learning and Improved Particle Swarm Optimization Algorithm
    Liu, Xiaobao
    Yan, Qingxiu
    Yi, Bin
    Yao, Tingqiang
    Gu, Wenjuan
    [J]. Zhongguo Jixie Gongcheng/China Mechanical Engineering, 2023, 34 (23): : 2842 - 2853
  • [45] Increment PID controller based on particle swarm optimization algorithm
    Li Shou-zhi
    Zhang wei
    Mao Fang-ren
    [J]. PROCEEDINGS OF 2005 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1 AND 2, 2005, : 914 - +
  • [46] PID based Particle Swarm Optimization in Offices Light Control
    Copot, Cosmin
    Thoa Mac Thi
    Ionescu, Clara
    [J]. IFAC PAPERSONLINE, 2018, 51 (04): : 382 - 387
  • [47] PARTICLE SWARM OPTIMIZATION BASED OPTIMAL PID CONTROLLER FOR QUADCOPTERS
    Sonugur, Guray
    Gokce, Celal Onur
    Koca, Yavuz Bahadir
    Inci, Seyket Semih
    Keles, Zeynep
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2021, 74 (12): : 1806 - 1814
  • [48] PSS based on optimal fuzzy PID with Particle Swarm Optimization
    Hakim, Ermanu A.
    Suprijanto, Adi
    Heri, P. Maurdhi
    [J]. 2007 CONFERENCE PROCEEDINGS IPEC, VOLS 1-3, 2007, : 1396 - +
  • [49] Logistics Distribution Route Optimization Based on Improved Particle Swarm Optimization
    Zhao, Hai
    Sharma, Ashutosh
    [J]. Informatica (Slovenia), 2023, 47 (02): : 243 - 252
  • [50] Improved ant colony optimization algorithm based on particle swarm optimization
    School of Automation, University of Science and Technology Beijing, Beijing 100083, China
    不详
    [J]. Kongzhi yu Juece Control Decis, 2013, 6 (873-878+883):