Broad- and narrow-sense validity performance of three polygenic risk score methods for prostate cancer risk assessment

被引:7
|
作者
Yu, Hongjie [1 ]
Shi, Zhuqing [1 ]
Lin, Xiaoling [2 ]
Bao, Quanwa [3 ]
Jia, Haifei [2 ]
Wei, Jun [1 ]
Helfand, Brian T. [1 ]
Zheng, Siqun. L. [1 ]
Duggan, David [4 ]
Lu, Daru [3 ]
Mo, Zengnan [5 ]
Xu, Jianfeng [1 ,2 ]
机构
[1] NorthShore Univ HealthSyst, Program Personalized Canc Care, 1001 Univ Pl, Evanston, IL 60201 USA
[2] Fudan Univ, Huashan Hosp, Fudan Inst Urol, Shanghai, Peoples R China
[3] Fudan Univ, Sch Life Sci, State Key Lab Genet Engn, Shanghai, Peoples R China
[4] City Hope Natl Med Ctr, Translat Genom Res Inst, Phoenix, AZ USA
[5] Guangxi Med Univ, Ctr Genom & Personalized Med, Nanning, Guangxi Zhuang, Peoples R China
来源
PROSTATE | 2020年 / 80卷 / 01期
关键词
clinical validity; genetic risk score; prostate cancer; GENOME-WIDE ASSOCIATION; MEN; PREDICTION; VARIANTS; BIOPSY;
D O I
10.1002/pros.23920
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Several polygenic risk score (PRS) methods are available for measuring the cumulative effect of multiple risk-associated single nucleotide polymorphisms (SNPs). Their performance in predicting risk at the individual level has not been well studied. Methods We compared the performance of three PRS methods for prostate cancer risk assessment in a clinical trial cohort, including genetic risk score (GRS), pruning and thresholding (P + T), and linkage disequilibrium prediction (LDpred). Performance was evaluated for score deciles (broad-sense validity) and score values (narrow-sense validity). Results A training process was required to identify the best P + T model (397 SNPs) and LDpred model (3 011 362 SNPs). In contrast, GRS was directly calculated based on 110 established risk-associated SNPs. For broad-sense validity in the testing population, higher deciles were significantly associated with higher observed risk;P(trend)was 7.40 x 10(-11), 7.64 x 10(-13), and 7.51 x 10(-10)for GRS, P + T, and LDpred, respectively. For narrow-sense validity, the calibration slope (1 is best) was 1.03, 0.77, and 0.87, and mean bias score (0 is best) was 0.09, 0.21, and 0.10 for GRS, P + T, and LDpred, respectively. Conclusions The performance of GRS was better than P + T and LDpred. Fewer and well-established SNPs of GRS also make it more feasible and interpretable for genetic testing at the individual level.
引用
收藏
页码:83 / 87
页数:5
相关论文
共 50 条
  • [21] Toward more personalized breast cancer risk assessment: The polygenic risk score
    Sarkis-Tannous, Daad
    Sukol, Roxanne B.
    Sullivan, Erika
    JAAPA-JOURNAL OF THE AMERICAN ACADEMY OF PHYSICIAN ASSISTANTS, 2023, 36 (10): : 37 - 40
  • [22] Combined Effect of a Polygenic Risk Score and Rare Genetic Variants on Prostate Cancer Risk
    Darst, Burcu F.
    Sheng, Xin
    Eeles, Rosalind A.
    Kote-Jarai, Zsofia
    Conti, David V.
    Haiman, Christopher A.
    EUROPEAN UROLOGY, 2021, 80 (02) : 134 - 138
  • [23] Evaluating the prognostic performance of a polygenic risk score for breast cancer risk stratification
    Maria Olsen
    Krista Fischer
    Patrick M. Bossuyt
    Els Goetghebeur
    BMC Cancer, 21
  • [24] Evaluating the prognostic performance of a polygenic risk score for breast cancer risk stratification
    Olsen, Maria
    Fischer, Krista
    Bossuyt, Patrick M.
    Goetghebeur, Els
    BMC CANCER, 2021, 21 (01)
  • [25] Epigenetic risk score improves prostate cancer risk assessment
    Van Neste, Leander
    Groskopf, Jack
    Grizzle, William E.
    Adams, George W.
    DeGuenther, Mark S.
    Kolettis, Peter N.
    Bryant, James E.
    Kearney, Gary P.
    Kearney, Michael C.
    Van Criekinge, Wim
    Gaston, Sandra M.
    PROSTATE, 2017, 77 (12): : 1259 - 1264
  • [26] Gastric Cancer Risk Prediction Using an Epidemiological Risk Assessment Model and Polygenic Risk Score
    Park, Boyoung
    Yang, Sarah
    Lee, Jeonghee
    Choi, Il Ju
    Kim, Young-Il
    Kim, Jeongseon
    CANCERS, 2021, 13 (04) : 1 - 13
  • [27] Re: Evaluation of a Multiethnic Polygenic Risk Score Model for Prostate Cancer
    Plym, A.
    Penney, K. L.
    Kalia, S.
    Kraft, P.
    Conti, D., V
    Haiman, C.
    Mucci, L. A.
    Kibel, A. S.
    JOURNAL OF UROLOGY, 2022, 207 (01): : 230 - 230
  • [28] Prediction of Individual Genetic Risk to Prostate Cancer Using a Polygenic Score
    Szulkin, Robert
    Whitington, Thomas
    Eklund, Martin
    Aly, Markus
    Eeles, Rosalind A.
    Easton, Douglas
    Kote-Jarai, ZSofia
    Al Olama, Ali Amin
    Benlloch, Sara
    Muir, Kenneth
    Giles, Graham G.
    Southey, Melissa C.
    Fitzgerald, Liesel M.
    Henderson, Brian E.
    Schumacher, Fredrick
    Haiman, Christopher A.
    Schleutker, Johanna
    Wahlfors, Tiina
    Tammela, Teuvo L. J.
    Nordestgaard, Borge G.
    Key, Tim J.
    Travis, Ruth C.
    Neal, David E.
    Donovan, Jenny L.
    Hamdy, Freddie C.
    Pharoah, Paul
    Pashayan, Nora
    Khaw, Kay-Tee
    Stanford, Janet L.
    Thibodeau, Stephen N.
    McDonnell, Shannon K.
    Schaid, Daniel J.
    Maier, Christiane
    Vogel, Walther
    Luedeke, Manuel
    Herkommer, Kathleen
    Kibel, Adam S.
    Cybulski, Cezary
    Lubinski, Jan
    Kluzniak, Wojciech
    Cannon-Albright, Lisa
    Brenner, Hermann
    Butterbach, Katja
    Stegmaier, Christa
    Park, Jong Y.
    Sellers, Thomas
    Lim, Hui-Yi
    Slavov, Chavdar
    Kaneva, Radka
    Mitev, Vanio
    PROSTATE, 2015, 75 (13): : 1467 - 1474
  • [29] Assessment of a Polygenic Risk Score for Colorectal Cancer to Predict Risk of Lynch Syndrome Colorectal Cancer
    Jenkins, Mark A.
    Buchanan, Daniel D.
    Lai, John
    Makalic, Enes
    Dite, Gillian S.
    Win, Aung K.
    Clendenning, Mark
    Winship, Ingrid M.
    Hayes, Richard B.
    Huyghe, Jeroen R.
    Peters, Ulrike
    Gallinger, Steven
    Le Marchand, Loic
    Figueiredo, Jane C.
    Pai, Rish K.
    Newcomb, Polly A.
    Church, James M.
    Casey, Graham
    Hopper, John L.
    JNCI CANCER SPECTRUM, 2021, 5 (02)
  • [30] Development of a polygenic risk score model for evaluation of genetic risk of prostate cancer in Japanese population
    Hachiya, Tsuyoshi
    Kobayashi, Takuro
    Terashima, Masami
    Sato-Baran, Iri
    Nagata, Masayoshi
    Horie, Shigeo
    CANCER SCIENCE, 2021, 112 : 654 - 654