Optimal stochastic transport in inhomogeneous thermal environments

被引:6
|
作者
Bo, Stefano [1 ,2 ,3 ,4 ,5 ]
Aurell, Erik [2 ,6 ,7 ]
Eichhorn, Ralf [3 ,4 ]
Celani, Antonio [8 ,9 ]
机构
[1] Inst Canc Res & Treatment Candiolo IRC C, I-10060 Turin, Italy
[2] AlbaNova Univ Ctr, KTH Royal Inst Technol, Dept Computat Biol, SE-10691 Stockholm, Sweden
[3] KTH Royal Inst Technol, Nordita, SE-10691 Stockholm, Sweden
[4] Stockholm Univ, SE-10691 Stockholm, Sweden
[5] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[6] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, SE-10044 Stockholm, Sweden
[7] Aalto Univ, Dept Informat & Comp Sci, FI-00076 Aalto, Finland
[8] Inst Pasteur, F-75015 Paris, France
[9] CNRS, UMR 3525, F-75015 Paris, France
基金
芬兰科学院;
关键词
D O I
10.1209/0295-5075/103/10010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the optimization of the average entropy production in inhomogeneous temperature environments within the framework of stochastic thermodynamics. For systems modeled by Langevin equations (e.g. a colloidal particle in a heat bath) it has been recently shown that a space-dependent temperature breaks the time reversal symmetry of the fast velocity degrees of freedom resulting in an anomalous contribution to the entropy production of the overdamped dynamics. We show that optimization of entropy production is determined by an auxiliary deterministic problem formally analogous to motion on a curved manifold in a potential. The "anomalous contribution" to entropy plays the role of the potential and the inverse of the diffusion tensor is the metric. We also find that entropy production is not minimized by adiabatically slow, quasi-static protocols but there is a finite optimal duration for the transport process. As an example we discuss the case of a linearly space-dependent diffusion coefficient. Copyright (c) EPLA, 2013
引用
收藏
页数:6
相关论文
共 50 条
  • [1] OPTIMAL MIXED STRATEGIES IN STOCHASTIC ENVIRONMENTS
    HACCOU, P
    IWASA, Y
    THEORETICAL POPULATION BIOLOGY, 1995, 47 (02) : 212 - 243
  • [2] Optimal chemotactic responses in stochastic environments
    Godany, Martin
    Khatri, Bhavin S.
    Goldstein, Richard A.
    PLOS ONE, 2017, 12 (06):
  • [3] Stochastic optimal transport revisited
    Mikami, Toshio
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2021, 2 (01):
  • [4] Evidence of inhomogeneous thermal transport in RTP
    Hogeweij, GMD
    Chu, CC
    DaCruz, DF
    DeLuca, F
    Gorini, G
    Jacchia, A
    Cardozo, NJL
    Mantica, P
    Oomens, AAM
    Peters, M
    Pijper, FJ
    Polman, RW
    NUCLEAR FUSION, 1996, 36 (05) : 535 - 544
  • [5] Optimal Protocols and Optimal Transport in Stochastic Thermodynamics
    Aurell, Erik
    Mejia-Monasterio, Carlos
    Muratore-Ginanneschi, Paolo
    PHYSICAL REVIEW LETTERS, 2011, 106 (25)
  • [6] Local Equilibrium in Inhomogeneous Stochastic Models of Heat Transport
    Nandori, Peter
    JOURNAL OF STATISTICAL PHYSICS, 2016, 164 (02) : 410 - 437
  • [7] Local Equilibrium in Inhomogeneous Stochastic Models of Heat Transport
    Péter Nándori
    Journal of Statistical Physics, 2016, 164 : 410 - 437
  • [8] STOCHASTIC-THEORY OF TRANSPORT IN INHOMOGENEOUS-MEDIA
    BHATIA, SK
    CHEMICAL ENGINEERING SCIENCE, 1986, 41 (05) : 1311 - 1324
  • [9] Optimal Transport Construction of Stochastic Processes
    不详
    IEEE CONTROL SYSTEMS MAGAZINE, 2021, 41 (04): : 40 - 41
  • [10] Electrical and Thermal Transport in Inhomogeneous Luttinger Liquids
    DeGottardi, Wade
    Matveev, K. A.
    PHYSICAL REVIEW LETTERS, 2015, 114 (23)