Bradley-Terry choice probability in maximum likelihood and eigenproblem solutions

被引:6
|
作者
Lipovetsky, Stan [1 ]
机构
[1] GfK Custom Res N Amer, Minneapolis, MN 55427 USA
关键词
paired comparisons; Bradley-Terry; Chapman-Kolmogorov equations;
D O I
10.1142/S0219622008003010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Bradley-Terry model (BT) is commonly used for evaluation of choice preferences by paired comparison data in various areas of applied psychology, advertising, and marketing research. The estimation of BT parameters of preference is usually achieved in an iterative procedure based on the maximum likelihood approach. In this paper an easier way of finding these parameters via an eigenproblem is considered. This approach corresponds to solving a Chapman-Kolmogorov system of equations to estimate the steady-state probabilities of the compared items. Both techniques produce very similar results, but the eigenvector solution is simpler for applications and suggests an interpretation of BT preferences as the choice probabilities. The suggested approach can facilitate the paired comparison estimations and be utilized in various practical aims of managerial decision making.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 50 条
  • [1] Pairwise marginal likelihood for the bradley-terry model
    Feddag M.-L.
    Journal of Statistical Theory and Practice, 2013, 7 (1) : 49 - 58
  • [2] THE BRADLEY-TERRY PROBABILITY MODEL AND PREFERENCE TASTING
    GRIDGEMAN, NT
    BIOMETRICS, 1955, 11 (03) : 335 - 343
  • [3] Evaluation of the Addition of Firth's Penalty Term to the Bradley-Terry Likelihood
    Meyvisch, Paul
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2016, 15 (02) : 224 - 237
  • [4] Bradley-Terry models in R
    Firth, D
    JOURNAL OF STATISTICAL SOFTWARE, 2005, 12 (01): : 1 - 12
  • [5] Generalized Bradley-Terry models and multi-class probability estimates
    Huang, TK
    Weng, RC
    Lin, CJ
    JOURNAL OF MACHINE LEARNING RESEARCH, 2006, 7 : 85 - 115
  • [6] A diagnostic framework for the Bradley-Terry model
    Wu, Weichen
    Niezink, Nynke
    Junker, Brian
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2022, 185 : S461 - S484
  • [7] BRADLEY-TERRY MODEL FOR STANDARD COMPARISON PAIRS
    SADASIVAN, G
    RAI, SC
    SANKHYA-SERIES B-APPLIED AND INTERDISCIPLINARY STATISTICS, 1973, 35 (MAR): : 25 - 34
  • [8] SPARSE PAIRED COMPARISONS IN THE BRADLEY-TERRY MODEL
    Yan, Ting
    Yang, Yaning
    Xu, Jinfeng
    STATISTICA SINICA, 2012, 22 (03) : 1305 - 1318
  • [9] ASYMPTOTIC THEORY OF SPARSE BRADLEY-TERRY MODEL
    Han, Ruijian
    Ye, Rougang
    Tan, Chunxi
    Chen, Kani
    ANNALS OF APPLIED PROBABILITY, 2020, 30 (05): : 2491 - 2515
  • [10] TEST OF LINEAR LOGISTIC AND BRADLEY-TERRY MODELS
    ATKINSON, AC
    BIOMETRIKA, 1972, 59 (01) : 37 - 42