Kiwifruit Flower Odor Perception and Recognition by Honey Bees, Apis mellifera

被引:25
|
作者
Twidle, Andrew M. [1 ]
Mas, Flore [1 ]
Harper, Aimee R. [1 ]
Horner, Rachael M. [1 ]
Welsh, Taylor J. [1 ]
Suckling, David M. [1 ]
机构
[1] New Zealand Inst Plant & Food Res Ltd, Christchurch Mail Ctr, Christchurch 8140, New Zealand
关键词
Actinidia; (6Z; 9Z)-heptadecadiene; (8Z)-heptadecene; (3E; 6E)-alpha-farnesene; proboscis extension response; learning; pollination; PROBOSCIS EXTENSION RESPONSE; GAS-CHROMATOGRAPHY; VARROA-DESTRUCTOR; VOLATILE CONSTITUENTS; FLORAL ODORS; POLLINATION; HIVE; SELECTION; LANGUAGE; BEHAVIOR;
D O I
10.1021/acs.jafc.5b01165
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Volatile organic compounds (VOCs) from male and female kiwifruit (Actinidia deliciosa 'Hayward') flowers were collected by dynamic headspace sampling. Honey bee (Apis mellifera) perception of the flower VOCs was tested using gas chromatography coupled to electroantennogram detection. Honey bees consistently responded to six compounds present in the headspace of female kiwifruit flowers and five compounds in the headspace of male flowers. Analysis of the floral volatiles by gas chromatography-mass spectrometry and microscale chemical derivatization showed the compounds to be nonanal, 2-phenylethanol, 4-oxoisophorone, (3E,6E)-alpha-farnesene, (6Z,9Z)-heptadecadiene, and (8Z)-heptadecene. Bees were then trained via olfactory conditioning of the proboscis extension response (PER) to synthetic mixtures of these compounds using the ratios present in each flower type. Honey bees trained to the synthetic mixtures showed a high response to the natural floral extracts, indicating that these may be the key compounds for honey bee perception of kiwifruit flower odor.
引用
收藏
页码:5597 / 5602
页数:6
相关论文
共 50 条
  • [21] Nosema ceranae in European honey bees (Apis mellifera)
    Fries, Ingemar
    JOURNAL OF INVERTEBRATE PATHOLOGY, 2010, 103 : S73 - S79
  • [22] Swarming and migration in the honey bees (Apis mellifera) of Ethiopia
    Nuru, A
    Amssalu, B
    Hepburn, HR
    Radloff, SE
    JOURNAL OF APICULTURAL RESEARCH, 2002, 41 (1-2) : 35 - 41
  • [23] Viruses that affect Argentinian honey bees (Apis mellifera)
    Salina, Marcos D.
    Garcia, Maria L. Genchi
    Bais, Barbara
    Bravi, Maria E.
    Brasesco, Constanza
    Maggi, Matias
    Pecoraro, Marcelo
    Larsen, Alejandra
    Sguazza, Hernan G.
    Reynaldi, Francisco J.
    ARCHIVES OF VIROLOGY, 2021, 166 (06) : 1533 - 1545
  • [24] Monitoring diseases of honey bees (Apis mellifera) in Russia
    Zinatullina, Z. Ya
    Dolnikova, T. Y.
    Domatskaya, T. F.
    Domatsky, A. N.
    UKRAINIAN JOURNAL OF ECOLOGY, 2018, 8 (03): : 106 - 112
  • [25] A modeling approach to swarming in honey bees (Apis mellifera)
    Fefferman, NH
    Starks, PT
    INSECTES SOCIAUX, 2006, 53 (01) : 37 - 45
  • [26] COLONIAL THERMOREGULATION IN HONEY BEES (APIS-MELLIFERA)
    KRONENBERG, F
    HELLER, HC
    JOURNAL OF COMPARATIVE PHYSIOLOGY, 1982, 148 (01): : 65 - 76
  • [27] HETEROSIS IN HONEY BEES (APIS-MELLIFERA-L)
    CALE, GH
    GENETICS, 1955, 40 (05) : 566 - 566
  • [28] Seasonality of salt foraging in honey bees (Apis mellifera)
    Bonoan, Rachael E.
    Tai, Taylor M.
    Rodriguez, Marlen Tagle
    Feller, Laine
    Daddario, Salvatore R.
    Czaja, Rebecca A.
    O'Connor, Luke D.
    Burruss, Georgiana
    Starks, Philip T.
    ECOLOGICAL ENTOMOLOGY, 2017, 42 (02) : 195 - 201
  • [29] The foraging behaviour of honey bees, Apis mellifera: a review
    Abou-Shaara, H. F.
    VETERINARNI MEDICINA, 2014, 59 (01) : 1 - 10
  • [30] A modeling approach to swarming in honey bees (Apis mellifera)
    N. H. Fefferman
    P. T. Starks
    Insectes Sociaux, 2006, 53 : 37 - 45