Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial Robustness

被引:0
|
作者
Wang, Zifeng [1 ]
Jian, Tong [1 ]
Masoomi, Aria [1 ]
Ioannidis, Stratis [1 ]
Dy, Jennifer [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the HSIC (Hilbert-Schmidt independence criterion) bottleneck as a regularizer for learning an adversarially robust deep neural network classifier. In addition to the usual cross-entropy loss, we add regularization terms for every intermediate layer to ensure that the latent representations retain useful information for output prediction while reducing redundant information. We show that the HSIC bottleneck enhances robustness to adversarial attacks both theoretically and experimentally. In particular, we prove that the HSIC bottleneck regularizer reduces the sensitivity of the classifier to adversarial examples. Our experiments on multiple benchmark datasets and architectures demonstrate that incorporating an HSIC bottleneck regularizer attains competitive natural accuracy and improves adversarial robustness, both with and without adversarial examples during training. Our code and adversarially robust models are publicly available.(2)
引用
收藏
页数:12
相关论文
共 50 条
  • [41] IB-RAR: Information Bottleneck as Regularizer for Adversarial Robustness
    Xu, Xiaoyun
    Perin, Guilherme
    Picek, Stjepan
    2023 53RD ANNUAL IEEE/IFIP INTERNATIONAL CONFERENCE ON DEPENDABLE SYSTEMS AND NETWORKS WORKSHOPS, DSN-W, 2023, : 129 - 135
  • [42] HILBERT MODULES REVISITED - ORTHONORMAL BASES AND HILBERT-SCHMIDT OPERATORS
    CABRERA, M
    MARTINEZ, J
    RODRIGUEZ, A
    GLASGOW MATHEMATICAL JOURNAL, 1995, 37 : 45 - 54
  • [43] Measuring statistical dependence with Hilbert-Schmidt norms
    Gretton, A
    Bousquet, O
    Smola, A
    Schölkopf, B
    ALGORITHMIC LEARNING THEORY, 2005, 3734 : 63 - 77
  • [44] Robust Learning with the Hilbert-Schmidt Independence Criterion
    Greenfeld, Daniel
    Shalit, Uri
    25TH AMERICAS CONFERENCE ON INFORMATION SYSTEMS (AMCIS 2019), 2019,
  • [45] THE HILBERT-SCHMIDT METHOD FOR NUCLEON DEUTERON SCATTERING
    MOLLER, K
    NARODETSKII, IM
    ZEITSCHRIFT FUR PHYSIK A-HADRONS AND NUCLEI, 1984, 315 (03): : 325 - 332
  • [46] A REMARK ON NORMAL DERIVATIONS OF HILBERT-SCHMIDT TYPE
    DUGGAL, BP
    MONATSHEFTE FUR MATHEMATIK, 1991, 112 (04): : 265 - 270
  • [47] Sequence Alignment with the Hilbert-Schmidt Independence Criterion
    Campbell, Jordan
    Lewis, J. P.
    Seol, Yeongho
    PROCEEDINGS CVMP 2018: THE 15TH ACM SIGGRAPH EUROPEAN CONFERENCE ON VISUAL MEDIA PRODUCTION, 2018,
  • [48] Multivariate Information Fusion for Identifying Antifungal Peptides with Hilbert-Schmidt Independence Criterion
    Zhou, Haohao
    Wang, Hao
    Ding, Yijie
    Tang, Jijun
    CURRENT BIOINFORMATICS, 2022, 17 (01) : 89 - 100
  • [49] A Hilbert-Schmidt integral operator and the Weil distribution
    Xian-Jin Li
    ScienceChina(Mathematics), 2023, 66 (01) : 91 - 114
  • [50] Oblique Duals of Generalized Hilbert-Schmidt Frames
    Li, Yun-Zhang
    Wu, Li-Juan
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2025, 48 (03)