Revisiting Hilbert-Schmidt Information Bottleneck for Adversarial Robustness

被引:0
|
作者
Wang, Zifeng [1 ]
Jian, Tong [1 ]
Masoomi, Aria [1 ]
Ioannidis, Stratis [1 ]
Dy, Jennifer [1 ]
机构
[1] Northeastern Univ, Boston, MA 02115 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the HSIC (Hilbert-Schmidt independence criterion) bottleneck as a regularizer for learning an adversarially robust deep neural network classifier. In addition to the usual cross-entropy loss, we add regularization terms for every intermediate layer to ensure that the latent representations retain useful information for output prediction while reducing redundant information. We show that the HSIC bottleneck enhances robustness to adversarial attacks both theoretically and experimentally. In particular, we prove that the HSIC bottleneck regularizer reduces the sensitivity of the classifier to adversarial examples. Our experiments on multiple benchmark datasets and architectures demonstrate that incorporating an HSIC bottleneck regularizer attains competitive natural accuracy and improves adversarial robustness, both with and without adversarial examples during training. Our code and adversarially robust models are publicly available.(2)
引用
收藏
页数:12
相关论文
共 50 条
  • [1] DIBAD: A Disentangled Information Bottleneck Adversarial Defense Method Using Hilbert-Schmidt Independence Criterion for Spectrum Security
    Zhang, Sicheng
    Yang, Yandie
    Zhou, Ziyao
    Sun, Zhi
    Lin, Yun
    [J]. IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 3879 - 3891
  • [2] Automatic Network Pruning via Hilbert-Schmidt Independence Criterion Lasso under Information Bottleneck Principle
    Guo, Song
    Zhang, Lei
    Zheng, Xiawu
    Wang, Yan
    Li, Yuchao
    Chao, Fei
    Wu, Chenglin
    Zhang, Shengchuan
    Ji, Rongrong
    [J]. 2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 17412 - 17423
  • [3] ON HILBERT-SCHMIDT COMPATIBILITY
    Potapov, Denis
    Skripka, Anna
    Sukochev, Fedor
    [J]. OPERATORS AND MATRICES, 2013, 7 (01): : 1 - 33
  • [4] ON AN INEQUALITY OF HILBERT-SCHMIDT NORM
    DU, HK
    [J]. KEXUE TONGBAO, 1983, 28 (10): : 1429 - 1429
  • [5] HILBERT-SCHMIDT REPRESENTATIONS OF GROUPS
    BAGGETT, L
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 21 (02) : 502 - &
  • [6] Nuclear and Hilbert-Schmidt Operators
    Prevot, Claudia
    Roeckner, Michael
    [J]. CONCISE COURSE ON STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS, 2007, 1905 : 109 - 113
  • [7] AN INEQUALITY FOR HILBERT-SCHMIDT NORM
    ARAKI, H
    YAMAGAMI, S
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 81 (01) : 89 - 96
  • [8] INDECOMPOSABLE HILBERT-SCHMIDT OPERATORS
    WEISS, G
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 56 (APR) : 172 - 176
  • [9] THE PROOF OF HILBERT-SCHMIDT THEOREMS
    SIEGMUNDSCHULTZE, R
    [J]. ARCHIVE FOR HISTORY OF EXACT SCIENCES, 1986, 36 (03) : 251 - 270
  • [10] On factorization of Hilbert-Schmidt mappings
    Mendes, CA
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 304 (01) : 137 - 146