Many-body localization of spinless fermions with attractive interactions in one dimension

被引:18
|
作者
Lin, Sheng-Hsuan [1 ,2 ,3 ]
Sbierski, Bjoern [4 ,5 ]
Dorfner, Florian [2 ,3 ]
Karrasch, Christoph [4 ,5 ]
Heidrich-Meisner, Fabian [2 ,3 ]
机构
[1] Tech Univ Munich, Dept Informat, D-85748 Garching, Germany
[2] Ludwig Maximilians Univ Munchen, Dept Phys, D-80333 Munich, Germany
[3] Ludwig Maximilians Univ Munchen, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[4] Free Univ Berlin, Dahlem Ctr Complex Quantum Syst, D-14195 Berlin, Germany
[5] Free Univ Berlin, Fachbereich Phys, D-14195 Berlin, Germany
来源
SCIPOST PHYSICS | 2018年 / 4卷 / 01期
基金
美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; ANDERSON LOCALIZATION; INSULATOR-TRANSITION; QUENCHED DISORDER; QUANTUM; SYSTEMS; BOSONS; CHAINS; PHASE;
D O I
10.21468/SciPostPhys.4.1.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the finite-energy density phase diagram of spinless fermions with attractive interactions in one dimension in the presence of uncorrelated diagonal disorder. Unlike the case of repulsive interactions, a delocalized Luttinger-liquid phase persists at weak disorder in the ground state, which is a well-known result. We revisit the ground-state phase diagram and show that the recently introduced occupation-spectrum discontinuity computed from the eigenspectrum of the one-particle density matrix is noticeably smaller in the Luttinger liquid compared to the localized regions. Moreover, we use the functional renormalization group scheme to study the finite-size dependence of the conductance, which also resolves the existence of the Luttinger liquid and is computationally cheap. Our main results concern the finite-energy density case. Using exact diagonalization and by computing various established measures of the many-body localization-delocalization transition, we argue that the zero-temperature Luttinger liquid smoothly evolves into a finite-energy density ergodic phase without any intermediate phase transition.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Many-body density matrices for free fermions
    Cheong, SA
    Henley, CL
    [J]. PHYSICAL REVIEW B, 2004, 69 (07):
  • [32] Many-body diffusion algorithm: Harmonic fermions
    Luczak, F
    Brosens, F
    Devreese, JT
    Lemmens, LF
    [J]. PHYSICAL REVIEW E, 1998, 57 (02): : 2411 - 2418
  • [33] Many-body mobility edges in a one-dimensional system of interacting fermions
    Nag, Sabyasachi
    Garg, Arti
    [J]. PHYSICAL REVIEW B, 2017, 96 (06)
  • [34] Many-body spectral statistics of interacting fermions
    Pascaud, M.
    Montambaux, G.
    [J]. Annalen der Physik (Leipzig), 1998, 7 (5-6): : 406 - 416
  • [35] Many-body flatband localization
    Danieli, Carlo
    Andreanov, Alexei
    Flach, Sergej
    [J]. PHYSICAL REVIEW B, 2020, 102 (04)
  • [36] Dynamics of many-body localization
    Bar Lev, Yevgeny
    Reichman, David R.
    [J]. PHYSICAL REVIEW B, 2014, 89 (22)
  • [37] Topology and many-body localization
    Bhatt, R. N.
    Krishna, Akshay
    [J]. ANNALS OF PHYSICS, 2021, 435
  • [38] Many-body localization landscape
    Balasubramanian, Shankar
    Liao, Yunxiang
    Galitski, Victor
    [J]. PHYSICAL REVIEW B, 2020, 101 (01)
  • [39] Many-body Anderson localization in one-dimensional systems
    Delande, Dominique
    Sacha, Krzysztof
    Plodzien, Marcin
    Avazbaev, Sanat K.
    Zakrzewski, Jakub
    [J]. NEW JOURNAL OF PHYSICS, 2013, 15
  • [40] Many-body spectral statistics of interacting fermions
    Pascaud, M
    Montambaux, G
    [J]. ANNALEN DER PHYSIK, 1998, 7 (5-6) : 406 - 416