SYNCHRONIZATION AND BASINS OF SYNCHRONIZED STATES IN TWO-DIMENSIONAL PIECEWISE MAPS VIA COUPLING THREE PIECES OF ONE-DIMENSIONAL MAPS

被引:1
|
作者
Fournier-Prunaret, Daniele [1 ]
Leonel Rocha, J. [2 ,3 ]
Caneco, Acilina [4 ,5 ]
Fernandes, Sara [6 ]
Gracio, Clara [6 ]
机构
[1] Univ Toulouse, INSA, LAAS CNRS, F-31077 Toulouse, France
[2] ADM, Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
[3] CEAUL, P-1959007 Lisbon, Portugal
[4] ADM, Inst Super Engn Lisboa, P-1959007 Lisbon, Portugal
[5] CIMA UE, P-1959007 Lisbon, Portugal
[6] Univ Evora, DMat, CIMA UE, P-7000 Evora, Portugal
来源
关键词
Almost global synchronization; Lyapunov exponents; basins; Lyapunov functions; NETWORKS; SYSTEMS;
D O I
10.1142/S0218127413501344
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] The activation law for one-dimensional maps
    Khovanov, IA
    Dumskii, DV
    Khovanova, NA
    TECHNICAL PHYSICS LETTERS, 2004, 30 (05) : 422 - 425
  • [42] Complexity, chaos and one-dimensional maps
    Steeb, WH
    Solms, F
    SOUTH AFRICAN JOURNAL OF SCIENCE, 1996, 92 (07) : 353 - 354
  • [43] ONE-DIMENSIONAL MAPS AND POINCARE METRIC
    SWIATEK, G
    NONLINEARITY, 1992, 5 (01) : 81 - 108
  • [44] Heredity in one-dimensional quadratic maps
    Romera, M
    Pastor, G
    Alvarez, G
    Montoya, F
    PHYSICAL REVIEW E, 1998, 58 (06): : 7214 - 7218
  • [45] WINDOW SCALING IN ONE-DIMENSIONAL MAPS
    POST, T
    CAPEL, HW
    VANDERWEELE, JP
    PHYSICS LETTERS A, 1989, 136 (03) : 109 - 113
  • [46] ONE-DIMENSIONAL MAPS, INTERMITTENCY AND SCALING
    HACINLIYAN, A
    OZEL, RM
    FIRAT, FG
    PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (06): : 1147 - 1153
  • [47] SUPERTRACK FUNCTIONS IN ONE-DIMENSIONAL MAPS
    LEO, M
    LEO, RA
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1994, 109 (03): : 229 - 238
  • [48] Differentiable Conjugacies for One-Dimensional Maps
    Glendinning, Paul
    Simpson, David J. W.
    DIFFERENCE EQUATIONS, DISCRETE DYNAMICAL SYSTEMS AND APPLICATIONS, IDCEA 2022, 2024, 444 : 115 - 130
  • [49] BORDER-COLLISION BIFURCATIONS FOR PIECEWISE-SMOOTH ONE-DIMENSIONAL MAPS
    NUSSE, HE
    YORKE, JA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (01): : 189 - 207
  • [50] Analysis of atypical orbits in one-dimensional piecewise-linear discontinuous maps
    Metri, Rajanikant
    Rajpathak, Bhooshan
    Pillai, Harish
    NONLINEAR DYNAMICS, 2023, 111 (10) : 9395 - 9408