Robust Moving Horizon State Estimation: Application to Bioprocesses

被引:0
|
作者
Tebbani, Sihem [1 ]
Le Brusquet, Laurent [2 ]
Petre, Emil [3 ]
Selisteanu, Dan [3 ]
机构
[1] SUPELEC, Syst Sci E3S, Dept Automat Control, F-91192 Gif Sur Yvette, France
[2] SUPELEC, Syst Sci E3S, Signal Proc & Elect Syst, F-91192 Gif Sur Yvette, France
[3] Univ Craiova, Dept Automat Control Elect & Mechatron, Craiova, Romania
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, a robust nonlinear receding-horizon observer is proposed for the estimation of cellular concentration in a bioreactor. In the presence of uncertainties on the model parameter or on the initial state of the system, this estimation problem can lead to poor estimation performance. A min-max optimization solution can be used to increase the robustness of the observer in the presence of parameter uncertainties. This solution assumes that each model parameter belongs to an interval. The paper proposes an alternative modeling for these parameters: A Gaussian model is assumed in order to take into account the correlation between parameters. As the confidence region for the parameters is now an ellipsoid, the max step in the min-max problem is replaced by more tractable statistics. Expected value has been tested for its simplicity. For robustness requirements a statistic considering the variance of the estimation has also been developed. Numerical simulations illustrate the efficiency of the proposed estimation scheme.
引用
收藏
页码:539 / 544
页数:6
相关论文
共 50 条
  • [21] Moving horizon estimation of vehicle state and parameters
    Liu, Yingjie
    Cui, Dawei
    Peng, Wen
    JOURNAL OF VIBROENGINEERING, 2023, 25 (02) : 409 - 427
  • [22] Moving Horizon for Friction State and Parameter Estimation
    Boegli, Max
    De Laet, Tinne
    De Schutter, Joris
    Swevers, Jan
    2013 EUROPEAN CONTROL CONFERENCE (ECC), 2013, : 4142 - 4147
  • [23] Application of Moving Horizon Observer for State Estimation in Drive System with Elastic Coupling
    Serkies, Piotr
    Szabat, Krzysztof
    2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2015, : 629 - 633
  • [24] A moving horizon scheme for distributed state estimation
    Farina, Marcello
    Ferrari-Trecate, Giancarlo
    Scattolini, Riccardo
    PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, : 1818 - 1823
  • [25] State estimation for bioprocesses
    Bernard, O
    Gouzé, JL
    MATHEMATICAL CONTROL THEORY, NOS 1 AND 2, 2002, 8 : 813 - 855
  • [26] Robust Moving Horizon State Estimation for Uncertain Linear Systems using Linear Matrix Inequalities
    Georgiou, Anastasis
    Tahir, Furqan
    Evangelou, Simos A.
    Jaimoukha, Imad M.
    2020 59TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2020, : 2900 - 2905
  • [27] A regularized Moving Horizon Estimator for combined state and parameter estimation in a bioprocess experimental application
    Tuveri, Andrea
    Nakama, Caroline S. M.
    Matias, Jose
    Holck, Haakon Eng
    Jaeschke, Johannes
    Imsland, Lars
    Bar, Nadav
    COMPUTERS & CHEMICAL ENGINEERING, 2023, 172
  • [28] Robust Stability of Gaussian Process Based Moving Horizon Estimation
    Wolff, Tobias M.
    Lopez, Victor G.
    Mueller, Matthias A.
    2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 4087 - 4093
  • [29] Robust moving horizon estimation for constrained linear system with uncertainties
    Zhao, Haiyan
    Chen, H.
    Yu, Shuyou
    Han, Guangxin
    Han, Guangxin
    2007 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-7, 2007, : 2208 - 2213
  • [30] Robust Stability of Moving Horizon Estimation Under Bounded Disturbances
    Ji, Luo
    Rawlings, James B.
    Hu, Wuhua
    Wynn, Andrew
    Diehl, Moritz
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (11) : 3509 - 3514