Universality at Breakdown of Quantum Transport on Complex Networks

被引:22
|
作者
Kulvelis, Nikolaj [1 ]
Dolgushev, Maxim [1 ]
Muelken, Oliver [1 ]
机构
[1] Univ Freiburg, Inst Phys, D-79104 Freiburg, Germany
关键词
DYNAMICS; MODELS;
D O I
10.1103/PhysRevLett.115.120602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider single-particle quantum transport on parametrized complex networks. Based on general arguments regarding the spectrum of the corresponding Hamiltonian, we derive bounds for a measure of the global transport efficiency defined by the time-averaged return probability. For treelike networks, we show analytically that a transition from efficient to inefficient transport occurs depending on the (average) functionality of the nodes of the network. In the infinite system size limit, this transition can be characterized by an exponent which is universal for all treelike networks. Our findings are corroborated by analytic results for specific deterministic networks, dendrimers and Vicsek fractals, and by Monte Carlo simulations of iteratively built scale-free trees.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] On the quantum simulation of complex networks
    Magano, Duarte
    Moutinho, Joao P.
    Coutinho, Bruno
    SCIPOST PHYSICS CORE, 2023, 6 (03):
  • [42] Quantum statistics in complex networks
    Bianconi, G
    PHYSICAL REVIEW E, 2002, 66 (05): : 5 - 056123
  • [43] Understanding and preventing cascading breakdown in complex clustered networks
    Huang, Liang
    Lai, Ying-Cheng
    Chen, Guanrong
    PHYSICAL REVIEW E, 2008, 78 (03)
  • [44] Phase transition and universality of the majority-rule model on complex networks
    Mulya, Didi Ahmad
    Muslim, Roni
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (10):
  • [45] Quantum Transport in -Cyclopentadienyl Indium Complex
    Matsuura, Yukihito
    Morioka, Toshifumi
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 2013, 574 (01) : 135 - 142
  • [46] Nonequilibrium distribution functions for quantum transport: Universality and approximation for the steady state regime
    Ness, H.
    PHYSICAL REVIEW B, 2014, 89 (04)
  • [47] Enhanced Quantum Transport in Multiplex Networks
    Oliver Mülken
    Journal of Statistical Physics, 2016, 162 : 644 - 651
  • [48] Enhanced Quantum Transport in Multiplex Networks
    Muelken, Oliver
    JOURNAL OF STATISTICAL PHYSICS, 2016, 162 (03) : 644 - 651
  • [49] UNIVERSALITY IN QUANTUM COMPUTATION
    DEUTSCH, D
    BARENCO, A
    EKERT, A
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1995, 449 (1937): : 669 - 677
  • [50] Universality and Quantum Dimensions
    Avetisyan, M. Y.
    Mkrtchyan, R. L.
    PHYSICS OF PARTICLES AND NUCLEI LETTERS, 2020, 17 (05) : 784 - 788