Characterization of stochastic control with optimal stopping in a Sobolev space

被引:2
|
作者
Chen, Xiaoshan [1 ]
Song, Qingshuo [1 ]
Yi, Fahuai [2 ]
Yin, George [3 ]
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou, Guangdong, Peoples R China
[3] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Stochastic control; Generalized Ito formula; Weak verification theorem; Optimal stopping;
D O I
10.1016/j.automatica.2013.02.040
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work develops a new framework for a class of stochastic control problems with optimal stopping. One of our main motivations stems from dealing with the option pricing of American type. The value function is characterized as the unique solution of a partial differential equation in a Sobolev space. Together with certain regularities and estimates of the value function, the existence of the optimal strategy is established. The key ingredient is the use of the Ito formula for functions in a Sobolev space. Our approach provides a new alternative method for dealing with a class of stochastic control problems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1654 / 1662
页数:9
相关论文
共 50 条
  • [41] A robust optimal control approach in the weighted Sobolev space for underactuated mechanical systems
    Cardoso, Daniel N.
    Esteban, Sergio
    Raffo, Guilherme, V
    AUTOMATICA, 2021, 125
  • [42] Optimal stopping time and impulse control problems for the stochastic Navier-Stokes equations
    Menaldi, JL
    Sritharan, SS
    STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2002, 227 : 389 - 404
  • [43] A Markov-Modulated Stochastic Control Problem with Optimal Multiple Stopping with Application to Finance
    Leung, Tim Siu-Tang
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 559 - 566
  • [44] SINGULAR STOCHASTIC CONTROL AND OPTIMAL STOPPING WITH PARTIAL INFORMATION OF ITO-LEVY PROCESSES
    Oksendal, Bernt
    Sulem, Agnes
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (04) : 2254 - 2287
  • [45] On the Stochastic Control-Stopping Problem
    El Asri, Brahim
    Hamadene, Said
    Oufdil, Khalid
    arXiv, 2020,
  • [46] On the stochastic control-stopping problem
    El Asri, Brahim
    Hamadene, Said
    Oufdil, Khalid
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 387 - 426
  • [47] Stochastic Optimal Control via Hilbert Space Embeddings of Distributions
    Thorpe, Adam J.
    Oishi, Meeko M. K.
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 904 - 911
  • [48] Construction of Optimal Interpolation Formulas in the Sobolev Space
    Shadimetov K.M.
    Hayotov A.R.
    Nuraliev F.A.
    Journal of Mathematical Sciences, 2022, 264 (6) : 782 - 793
  • [49] APPROXIMATE CHARACTERIZATION OF OPTIMAL STOPPING BOUNDARIES
    WHITTLE, P
    JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) : 158 - 165
  • [50] Characterization of orlicz-sobolev space
    Tuominen, Heli
    ARKIV FOR MATEMATIK, 2007, 45 (01): : 123 - 139