The effects of fluoxetine on the human adipose-derived stem cell proliferation and differentiation

被引:7
|
作者
Khademi, Marzieh [1 ]
Ghavamabadi, Razieh Taghizadeh [1 ,2 ]
Taghavi, Mohammad M. [1 ,2 ]
Shabanizadeh, Ahmad [1 ,3 ]
Shariati-kohbanani, Mehdi [1 ,2 ]
Hassanipour, Mahsa [2 ,4 ]
Taghipour, Zahra [1 ,2 ]
机构
[1] Rafsanjan Univ Med Sci, Dept Anat, Sch Med, Rafsanjan, Iran
[2] Rafsanjan Univ Med Sci, Physiol Pharmacol Res Ctr, Rafsanjan, Iran
[3] Rafsanjan Univ Med Sci, Immunol Infect Dis Res Ctr, Rafsanjan, Iran
[4] Rafsanjan Univ Med Sci, Dept Physiol & Pharmacol, Sch Med, Rafsanjan, Iran
关键词
adipogenic differentiation; fluoxetine; human adipose-derived stem cell; osteogenic differentiation; proliferation; IN-VITRO DIFFERENTIATION; INDUCED APOPTOSIS; BONE LOSS; SEROTONIN; EXPOSURE; ANTIDEPRESSANTS; EXPRESSION; ALTERS; GROWTH; MICE;
D O I
10.1111/fcp.12426
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Fluoxetine is one of the most commonly used antidepressants. Fluoxetine could prevent the mesenchymal stem cell differentiation in lung fetus of rat. Moreover, the mesenchymal stem cells are also present in adult tissues. Therefore, in the current study, we aimed to investigate the effects of fluoxetine (FLX) on both proliferation and adipogenic/osteogenic differentiation of human adipose-derived stem cells (ADSCs). After culturing of human ADSCs, these cells were treated with two concentrations of FLX (10 and 20 mu m). Then, cells were differentiated by adding osteogenic and adipogenic media. The effect of FLX on human ADSCs proliferation was evaluated by MTT assay. Fluoxetine role on adipogenic and osteogenic differentiation of human ADSCs was analyzed by oil red and alizarin red staining and RT-PCR reaction. According to MTT assay, FLX showed a time- and concentration-dependent proliferation response and eventually decreased human ADSCs proliferation. RT-PCR analysis indicated that FLX significantly diminished the expression of osteogenesis-related genes such as RUNX2 and alkaline phosphatase (ALP). Data also revealed a significant reduction in the expression of peroxisome proliferator-activated receptor gamma (PPAR gamma) and fatty acid-binding protein (FABP) (specific genes of adipogenic lineage). In addition, FLX decreased mineralized matrix and the amount of lipid droplets in human ADSCs by staining methods. Our observation demonstrated that the effects of FLX may be time-dependent. This drug possesses an increasing phase in proliferation and survival of human ADSCs (first 24 h) following a decreasing phase (after 48 h). Moreover, FLX could attenuate both osteogenic and adipogenic differentiation of human ADSCs.
引用
收藏
页码:286 / 295
页数:10
相关论文
共 50 条
  • [41] Effects of naringin on the proliferation and osteogenic differentiation of Human adipose derived stem cells
    Liu, Youwen
    Wan, Huichao
    Jin, Yudong
    Yu, Yang
    Liu, Jing
    Zhang, Xiaodong
    Zhu, Yingjie
    Zhang, Ying
    Chen, Xiantao
    Zhao, Hanzheng
    Li, Wuyin
    INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE, 2014, 34 : S134 - S134
  • [42] Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells
    Bolukbasi Ates, Gamze
    Ak, Ayse
    Garipcan, Bora
    Gulsoy, Murat
    CYTOTECHNOLOGY, 2020, 72 (02) : 247 - 258
  • [43] Photobiomodulation effects on osteogenic differentiation of adipose-derived stem cells
    Gamze Bölükbaşı Ateş
    Ayşe Ak
    Bora Garipcan
    Murat Gülsoy
    Cytotechnology, 2020, 72 : 247 - 258
  • [44] Endothelium differentiation and regeneration from human adipose-derived stem cell by shear stress
    Chang, Ya-Ju
    Lin, Sheng-Che
    Chien, Shu
    Wu, Chia-Ching
    FASEB JOURNAL, 2012, 26
  • [45] Endothelium differentiation and regeneration from human adipose-derived stem cell by shear stress
    Chang, Y. J.
    Lin, S. C.
    Fan, S. C.
    Chien, S.
    Wu, C. C.
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2012, 6 : 308 - 308
  • [46] Notch Signaling Activation Enhances Human Adipose-Derived Stem Cell Retinal Differentiation
    Huang, Yuqiang
    Ng, Tsz Kin
    Chen, Chong-Bo
    Huang, Bing
    Liang, Jiajian
    Pang, Chi Pui
    Zhang, Mingzhi
    STEM CELLS INTERNATIONAL, 2018, 2018
  • [47] Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation
    Yao, Rui
    Zhang, Renji
    Luan, Jie
    Lin, Feng
    BIOFABRICATION, 2012, 4 (02)
  • [48] The correlation between human adipose-derived stem cells differentiation and cell adhesion mechanism
    Park, In-Su
    Han, Min
    Rhie, Jong-Won
    Kim, Soo Hyun
    Jung, Youngmee
    Kim, Ik Hwan
    Kim, Sang-Heon
    BIOMATERIALS, 2009, 30 (36) : 6835 - 6843
  • [49] Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells
    Cowden, Kari
    Dias-Netipanyj, Marcela Ferreira
    Popat, Ketul C.
    NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE, 2019, 17 : 380 - 390
  • [50] The Antiaging Gene Klotho Regulates Proliferation and Differentiation of Adipose-Derived Stem Cells
    Fan, Jun
    Sun, Zhongjie
    STEM CELLS, 2016, 34 (06) : 1615 - 1625