Digital solution for detection of undiagnosed diabetes using machine learning-based retinal image analysis

被引:0
|
作者
Zee, Benny [1 ,2 ]
Lee, Jack [1 ]
Lai, Maria [1 ]
Chee, Peter [3 ]
Rafferty, James [4 ]
Thomas, Rebecca [5 ]
Owens, David [5 ]
机构
[1] Chinese Univ Hong Kong, Fac Med, Ctr Clin Res & Biostat, Jockey Club Sch Publ Hlth & Primary Care, Hong Kong, Peoples R China
[2] CUHK Shenzhen Res Inst, Clin Trials & Biostat Lab, Shenzhen, Peoples R China
[3] St Johns Hosp, Hosp Author Hong Kong, Hong Kong, Peoples R China
[4] Swansea Univ, Ctr Biomath, Swansea, Wales
[5] Swansea Univ, Biomed Sci, Swansea, Wales
关键词
public health; retina; prediabetic state; primary health care; RETINOPATHY; PREVALENCE; MELLITUS; DISEASE; RISK;
D O I
10.1136/bmjdrc-2022-002914
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
IntroductionUndiagnosed diabetes is a global health issue. Previous studies have estimated that about 24.1%-75.1% of all diabetes cases are undiagnosed, leading to more diabetic complications and inducing huge healthcare costs. Many current methods for diabetes diagnosis rely on metabolic indices and are subject to considerable variability. In contrast, a digital approach based on retinal image represents a stable marker of overall glycemic status.Research design and methodsOur study involves 2221 subjects for developing a classification model, with 945 subjects with diabetes and 1276 controls. The training data included 70% and the testing data 30% of the subjects. All subjects had their retinal images taken using a non-mydriatic fundus camera. Two separate data sets were used for external validation. The Hong Kong testing data contain 734 controls without diabetes and 660 subjects with diabetes, and the UK testing data have 1682 subjects with diabetes.ResultsThe 10-fold cross-validation using the support vector machine approach has a sensitivity of 92% and a specificity of 96.2%. The separate testing data from Hong Kong provided a sensitivity of 99.5% and a specificity of 91.1%. For the UK testing data, the sensitivity is 98.0%. The accuracy of the Caucasian retinal images is comparable with that of the Asian data. It implies that the digital method can be applied globally. Those with diabetes complications in both Hong Kong and UK data have a higher probability of risk of diabetes compared with diabetes subjects without complications.ConclusionsA digital machine learning-based method to estimate the risk of diabetes based on retinal images has been developed and validated using both Asian and Caucasian data. Retinal image analysis is a fast, convenient, and non-invasive technique for community health applications. In addition, it is an ideal solution for undiagnosed diabetes prescreening.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Comparative Analysis of Machine Learning-Based Algorithms for Detection of Anomalies in IIoT
    Naik, Bhupal D. S.
    Dondeti, Venkatesulu
    Balakrishna, Sivadi
    INTERNATIONAL JOURNAL OF INFORMATION RETRIEVAL RESEARCH, 2022, 12 (01)
  • [42] Machine learning-based phishing attack detection
    Hossain S.
    Sarma D.
    Chakma R.J.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (09): : 378 - 388
  • [43] Machine learning-based test smell detection
    Pontillo, Valeria
    d'Aragona, Dario Amoroso
    Pecorelli, Fabiano
    Di Nucci, Dario
    Ferrucci, Filomena
    Palomba, Fabio
    EMPIRICAL SOFTWARE ENGINEERING, 2024, 29 (02)
  • [44] Machine Learning-Based Phishing Attack Detection
    Hossain, Sohrab
    Sarma, Dhiman
    Chakma, Rana Joyti
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 378 - 388
  • [45] Machine Learning-Based Colorectal Cancer Detection
    Blanes-Vidal, Victoria
    Baatrup, Gunnar
    Nadimi, Esmaeil S.
    PROCEEDINGS OF THE 2018 CONFERENCE ON RESEARCH IN ADAPTIVE AND CONVERGENT SYSTEMS (RACS 2018), 2018, : 43 - 46
  • [46] Machine learning-based test smell detection
    Valeria Pontillo
    Dario Amoroso d’Aragona
    Fabiano Pecorelli
    Dario Di Nucci
    Filomena Ferrucci
    Fabio Palomba
    Empirical Software Engineering, 2024, 29
  • [47] Supervised Machine Learning-based Fall Detection
    Caya, Meo Vincent C.
    Magwili, Glenn V.
    Agulto, Denver L.
    John Laranang, Russell
    Palomo, Louisse Kayle G.
    2018 IEEE 10TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT AND MANAGEMENT (HNICEM), 2018,
  • [48] Machine learning-based detection of chemical risk
    Grabar, Natalia
    Wandji Tchamp, Ornella
    Maxim, Laura
    E-HEALTH - FOR CONTINUITY OF CARE, 2014, 205 : 725 - 729
  • [49] Machine learning-based guilt detection in text
    Meque, Abdul Gafar Manuel
    Hussain, Nisar
    Sidorov, Grigori
    Gelbukh, Alexander
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Machine Learning-Based Detection of Spam Emails
    Bin Siddique, Zeeshan
    Khan, Mudassar Ali
    Din, Ikram Ud
    Almogren, Ahmad
    Mohiuddin, Irfan
    Nazir, Shah
    SCIENTIFIC PROGRAMMING, 2021, 2021