Single-Particle Characterization of Aβ Oligomers in Solution

被引:104
|
作者
Yusko, Erik C. [1 ]
Prangkio, Panchika [1 ]
Sept, David [1 ,2 ]
Rollings, Ryan C. [3 ]
Li, Jiali [3 ]
Mayer, Michael [1 ,4 ]
机构
[1] Univ Michigan, Dept Biomed Engn, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Ctr Computat Med & Biol, Ann Arbor, MI 48109 USA
[3] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[4] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
nanopore; single molecule; bilayer-coated nanopore; amyloid-beta oligomer; amyloid aggregate; amyloid fiber; protofibril; resistive pulse; cluster analysis; Coulter counter; size distribution; bootstrap resampling; cumulative distribution function; probability density function; SUBMICROMETER PORES; AMYLOID FIBRILS; PEPTIDE; DISEASE; SIZE; MEMBRANE; DNA; NEUROTOXICITY; TRANSLOCATION; AGGREGATION;
D O I
10.1021/nn300542q
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Determining the pathological role of amyloids in amyloid-associated diseases will require a method for characterizing the dynamic distributions in size and shape of amyloid oligomers with high resolution. Here, we explored the potential of resistive-pulse sensing through lipid bilayer-coated nanopores to measure the size of individual amyloid-beta oligomers directly in solution and without chemical modification. This method classified individual amyloid-beta aggregates as spherical oligomers, protofibrils, or mature fibers and made it possible to account for the large heterogeneity of amyloid-P aggregate sizes. The approach revealed the distribution of protofibrillar lengths (12- to 155 -mer) as well as the average cross-sectional area of protofibrils and fibers.
引用
收藏
页码:5909 / 5919
页数:11
相关论文
共 50 条
  • [21] Single-Particle Entanglement
    Azzini, Stefano
    Mazzucchi, Sonia
    Moretti, Valter
    Pastorello, Davide
    Pavesi, Lorenzo
    ADVANCED QUANTUM TECHNOLOGIES, 2020, 3 (10)
  • [22] SINGLE-PARTICLE TECHNIQUES
    FISCHER, BE
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1991, 54 (1-3): : 401 - 406
  • [23] Single-particle entanglement
    van Enk, SJ
    PHYSICAL REVIEW A, 2005, 72 (06):
  • [24] Single-particle Diffraction
    Sayre, David
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2005, 61 : C1 - C1
  • [25] Single-particle virology
    Kiss B.
    Mudra D.
    Török G.
    Mártonfalvi Z.
    Csík G.
    Herényi L.
    Kellermayer M.
    Biophysical Reviews, 2020, 12 (5) : 1141 - 1154
  • [26] SINGLE-PARTICLE KINETICS
    TIMMONS, RJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 206 : 15 - FERT
  • [27] Single-particle photoelectrocatalysis
    Chen, Peng
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [28] Single-particle entanglement
    Can, MA
    Klyachko, A
    Shumovsky, A
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2005, 7 (02) : L1 - L3
  • [29] SINGLE-PARTICLE ENERGIES AND SINGLE-PARTICLE WAVE-FUNCTIONS IN MIDDLE OF A SHELL
    YAZAKI, K
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1975, 20 (04): : 600 - 600
  • [30] Mean single-particle potentials and single-particle energies in a microscopic model of the nucleus
    A. I. Steshenko
    Physics of Atomic Nuclei, 2002, 65 : 413 - 425