SMOOTH ANALYSIS ON CONE FUNCTION ASSOCIATED WITH ELLIPSOIDAL CONE

被引:0
|
作者
Lu, Yue [1 ]
Chen, Jein-Shan [2 ]
机构
[1] Tianjin Normal Univ, Sch Math Sci, Tianjin 300387, Peoples R China
[2] Natl Taiwan Normal Univ, Dept Math, Taipei 11677, Taiwan
基金
中国国家自然科学基金;
关键词
Nonsymmetric cones; ellipsoidal cones; cone function; NEWTON METHOD; OPTIMIZATION;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As an important prototype in closed convex cones, ellipsoidal cone covers several practical instances such as second-order cone, circular cone and elliptic cone. In virtue of a recent study on its decomposition expression, we present a symmetric type of ellipsoidal cone function and show that this vector-valued function inherits some smooth properties from its corresponding scalar function, particularly in continuity, directional differentiability, differentiability and continuous differentiability. We believe that these results will play important roles on further analysis and study about conic programming problems associated with ellipsoidal cone.
引用
收藏
页码:1327 / 1347
页数:21
相关论文
共 50 条
  • [21] Asymptotic analysis of a rubber cone dented by a rigid cone
    Y. C. Gao
    Y. -W. Mai
    Acta Mechanica, 2002, 158 : 199 - 214
  • [22] Visual Cone Arrestin 4 Contributes to Visual Function and Cone Health
    Deming, Janise D.
    Pak, Joseph S.
    Brown, Bruce M.
    Kim, Moon K.
    Aung, Moe H.
    Eom, Yun Sung
    Shin, Jung-a
    Lee, Eun-Jin
    Pardue, Machelle T.
    Craft, Cheryl Mae
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2015, 56 (09) : 5407 - 5416
  • [23] Local cone and rod system function hi progressive cone dystrophy
    Holopigian, K
    Seiple, W
    Greenstein, VC
    Hood, DC
    Carr, RE
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2002, 43 (07) : 2364 - 2373
  • [24] SUBHARMONIC FUNCTION ORDER IN CONE
    RASHKOVSKII, AY
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1990, (02): : 80 - 84
  • [25] CONE FUNCTION IN CONGENITAL NYCTALOPIA
    SIEGEL, IM
    GREENSTEIN, VC
    SEIPLE, WH
    CARR, RE
    DOCUMENTA OPHTHALMOLOGICA, 1987, 65 (03) : 307 - 318
  • [26] Microtubules and growth cone function
    Gordon-Weeks, PR
    JOURNAL OF NEUROBIOLOGY, 2004, 58 (01): : 70 - 83
  • [27] Zeta Function on a Generalised Cone
    Guido Cognola
    Sergio Zerbini
    Letters in Mathematical Physics, 1997, 42 : 95 - 101
  • [28] Cone in cone
    Broadhead, GC
    SCIENCE, 1907, 26 : 597 - 597
  • [29] On singularities of smooth maps to a space with a fixed cone
    Shapiro, BZ
    MATHEMATICA SCANDINAVICA, 1995, 77 (01) : 19 - 44
  • [30] Electromagnetic scattering by a smooth convex impedance cone
    Bernard, JML
    Lyalinov, MA
    IMA JOURNAL OF APPLIED MATHEMATICS, 2004, 69 (03) : 285 - 333