Estimation of grassland biomass and nitrogen using MERIS data

被引:83
|
作者
Ullah, Saleem [1 ]
Si, Yali [2 ,3 ]
Schlerf, Martin [4 ]
Skidmore, Andrew K. [1 ]
Shafique, Muhammad [5 ]
Iqbal, Irfan Akhtar [6 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands
[2] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China
[4] CRPGL, L-4422 Belvaux, Luxembourg
[5] Univ Peshawar, NCEG, Peshawar, Pakistan
[6] Pakistan Space & Upper Atmosphere Res Commiss SUP, Karachi 75270, Pakistan
关键词
Quantifying biomass; Nitrogen concentration; and nitrogen density; Vegetation indices; Band depth analysis parameters; BAND-DEPTH ANALYSIS; RED-EDGE; VEGETATION INDEXES; ABOVEGROUND BIOMASS; BROAD-BAND; QUALITY; COVER; SHIFT; NDVI; AREA;
D O I
10.1016/j.jag.2012.05.008
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R-2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m(-2) (using an independent validation dataset, n=30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m(-2)). Nitrogen density was also best predicted by NBDI and yielded a calibration R-2 of 0.51 and a RMSE of 4.2 g m(-2) compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m(-2)). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R-2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P>0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 204
页数:9
相关论文
共 50 条
  • [31] Comparison on Estimation of Wood Biomass Using Forest Inventory Data
    Li Haikui
    Zhao Pengxiang
    Lei Yuancai
    Zeng Weisheng
    Chinese Forestry Science and Technology, 2012, 11 (03) : 56 - 57
  • [32] The estimation models of rape biomass yield using hyperspectral data
    Yang, YH
    Huang, JF
    Wang, FM
    IGARSS 2005: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, PROCEEDINGS, 2005, : 1900 - 1903
  • [33] ESTIMATION OF FUEL BIOMASS FOR GRASSLANDS USING DATA ASSIMILATION TECHNIQUE
    Zhang, Yang
    Shu, Qidi
    Wang, Long
    Quan, Xingwen
    Liu, Xiangzhuo
    Lu, Biao
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9988 - 9991
  • [34] Autumn nitrogen enrichment destabilizes ecosystem biomass production in a semiarid grassland
    Zhang, Yuqiu
    Ren, Zhengru
    Lu, Haining
    Chen, Xu
    Liu, Ruoxuan
    Zhang, Yunhai
    FUNDAMENTAL RESEARCH, 2023, 3 (02): : 170 - 178
  • [35] Grassland Yield Estimation Using Transfer Learning from Remote Sensing Data
    Eder, Elias
    Riegler-Nurscher, Peter
    Prankl, Johann
    Prankl, Heinrich
    KUNSTLICHE INTELLIGENZ, 2023, 37 (2-4): : 187 - 194
  • [36] Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data-successes and challenges
    Moses, W. J.
    Gitelson, A. A.
    Berdnikov, S.
    Povazhnyy, V.
    ENVIRONMENTAL RESEARCH LETTERS, 2009, 4 (04):
  • [37] Grassland aboveground biomass retrieval from remote sensing data by using artificial neural network in temperate grassland, northern China
    Jin, Y. X.
    Xu, B.
    Yang, X. C.
    Qin, Z. H.
    Li, J. Y.
    Zhao, F.
    Chen, S.
    Ma, H. L.
    Wu, Q.
    THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 309 - 314
  • [38] Nitrogen losses from two grassland soils with different fungal biomass
    de Vries, Franciska T.
    van Groenigen, Jan Willem
    Hoffland, Ellis
    Bloem, Jaap
    SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (05): : 997 - 1005
  • [39] Estimation of aboveground biomass using in situ hyperspectral measurements in five major grassland ecosystems on the Tibetan Plateau
    Shen, Miaogen
    Tang, Yanhong
    Klein, Julia
    Zhang, Pengcheng
    Gu, Song
    Shimono, Ayako
    Chen, Jin
    JOURNAL OF PLANT ECOLOGY, 2008, 1 (04) : 247 - 257
  • [40] Estimating natural grassland biomass by vegetation indices using Sentinel 2 remote sensing data
    Guerini Filho, Marildo
    Kuplich, Tatiana Mora
    De Quadros, Fernando L. F.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (08) : 2861 - 2876