Estimation of grassland biomass and nitrogen using MERIS data

被引:83
|
作者
Ullah, Saleem [1 ]
Si, Yali [2 ,3 ]
Schlerf, Martin [4 ]
Skidmore, Andrew K. [1 ]
Shafique, Muhammad [5 ]
Iqbal, Irfan Akhtar [6 ]
机构
[1] Univ Twente, Fac Geoinformat Sci & Earth Observat ITC, NL-7500 AA Enschede, Netherlands
[2] Tsinghua Univ, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Ctr Earth Syst Sci, Beijing 100084, Peoples R China
[4] CRPGL, L-4422 Belvaux, Luxembourg
[5] Univ Peshawar, NCEG, Peshawar, Pakistan
[6] Pakistan Space & Upper Atmosphere Res Commiss SUP, Karachi 75270, Pakistan
关键词
Quantifying biomass; Nitrogen concentration; and nitrogen density; Vegetation indices; Band depth analysis parameters; BAND-DEPTH ANALYSIS; RED-EDGE; VEGETATION INDEXES; ABOVEGROUND BIOMASS; BROAD-BAND; QUALITY; COVER; SHIFT; NDVI; AREA;
D O I
10.1016/j.jag.2012.05.008
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This study aimed to investigate the potential of MERIS in estimating the quantity and quality of a grassland using various vegetation indices (NDVI, SAVI, TSAVI, REIP, MTCI and band depth analysis parameters) at a regional scale. Green biomass was best predicted by NBDI (normalised band depth index) and yielded a calibration R-2 of 0.73 and a Root Mean Square Error (RMSE) of 136.2 g m(-2) (using an independent validation dataset, n=30) compared to a much higher RMSE obtained from soil adjusted vegetation index SAVI (444.6 g m(-2)). Nitrogen density was also best predicted by NBDI and yielded a calibration R-2 of 0.51 and a RMSE of 4.2 g m(-2) compared to a relatively higher RMSE obtained from MERIS terrestrial chlorophyll index MTCI (6.6 g m(-2)). For the estimation of nitrogen concentration (%), band depth analysis parameters showed poor R-2 of 0.21 and the results of MTCI and REIP were statistically non-significant (P>0.05). It is concluded that band depth analysis parameters consistently showed higher accuracy than vegetation indices, suggesting that band depth analysis parameters could be used to monitor grassland condition over time at regional scale. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:196 / 204
页数:9
相关论文
共 50 条
  • [1] Estimation of particulate zinc using MERIS data of the Pearl River Estuary
    Liu, Fenfen
    Tang, Shilin
    Chen, Chuqun
    REMOTE SENSING LETTERS, 2013, 4 (08) : 813 - 821
  • [2] Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland
    Chen, Ang
    Wang, Xing
    Zhang, Min
    Guo, Jian
    Xing, Xiaoyu
    Yang, Dong
    Zhang, Huilong
    Hou, Zhiyan
    Jia, Ze
    Yang, Xiuchun
    REMOTE SENSING, 2023, 15 (02)
  • [3] BIOMASS ESTIMATION OF PRODUCER IN GRASSLAND ECOSYSTEM
    MALL, IP
    TUGNAWAT, RK
    CURRENT SCIENCE, 1973, 42 (24): : 868 - 869
  • [4] Estimation of gross nitrogen transformations and nitrogen retention in grassland soils using FLUAZ
    Accoe, F
    Boeckx, P
    Videla, X
    Pino, I
    Hofman, G
    Van Cleemput, O
    SOIL SCIENCE SOCIETY OF AMERICA JOURNAL, 2005, 69 (06) : 1967 - 1976
  • [5] Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model
    Si, Yali
    Schlerf, Martin
    Zurita-Milla, Raul
    Skidmore, Andrew
    Wang, Tiejun
    REMOTE SENSING OF ENVIRONMENT, 2012, 121 : 415 - 425
  • [6] Estimation of aboveground biomass of senescence grassland in China's arid region using multi-source data
    Zhou, Jiahui
    Zhang, Renping
    Guo, Jing
    Dai, Junfeng
    Zhang, Jianli
    Zhang, Liangliang
    Miao, Yuhao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 918
  • [7] Estimation of degraded grassland aboveground biomass using machine learning methods from terrestrial laser scanning data
    Xu, Kexin
    Su, Yanjun
    Liu, Jin
    Hu, Tianyu
    Jin, Shichao
    Ma, Qin
    Zhai, Qiuping
    Wang, Rui
    Zhang, Jing
    Li, Yumei
    Liu, Hon An
    Guo, Qinghua
    ECOLOGICAL INDICATORS, 2020, 108
  • [8] Modeling Managed Grassland Biomass Estimation by Using Multitemporal Remote Sensing Data-A Machine Learning Approach
    Ali, Iftikhar
    Cawkwell, Fiona
    Dwyer, Edward
    Green, Stuart
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (07) : 3254 - 3264
  • [9] Evaluation of SPOT imagery for the estimation of grassland biomass
    Dusseux, P.
    Hubert-Moy, L.
    Corpetti, T.
    Vertes, F.
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 38 : 72 - 77
  • [10] Estimating grassland Biomass using SVM band shaving of hyperspectral data
    Clevers, J. G. P. W.
    van der Heijden, G. W. A. M.
    Verzakov, S.
    Schaepman, M. E.
    PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2007, 73 (10): : 1141 - 1148