Hypercyclic algebras for convolution and composition operators

被引:6
|
作者
Bes, J. [1 ]
Conejero, J. A. [2 ]
Papathanasiou, D. [1 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46022 Valencia, Spain
关键词
Hypercyclic algebras; Convolution operators; Composition operators; Hypercyclic subspaces;
D O I
10.1016/j.jfa.2018.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an alternative proof to those by Shkarin and by Bayart and Matheron that the operator D of complex differentiation supports a hypercyclic algebra on the space of entire functions. In particular we obtain hypercyclic algebras for many convolution operators not induced by polynomials, such as cos(D), De(D), or e(D) - aI, where 0 < a <= 1. In contrast, weighted composition operators on function algebras of analytic functions on a plane domain fail to support supercyclic algebras. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2884 / 2905
页数:22
相关论文
共 50 条
  • [31] Subspaces of Frequently Hypercyclic Functions for Sequences of Composition Operators
    L. Bernal-González
    M. C. Calderón-Moreno
    A. Jung
    J. A. Prado-Bassas
    [J]. Constructive Approximation, 2019, 50 : 323 - 339
  • [32] HYPERCYCLIC MULTIPLICATION COMPOSITION OPERATORS ON WEIGHTED BANACH SPACE
    Cui Wang
    Huiqiang Lu
    [J]. Annals of Applied Mathematics, 2019, 35 (02) : 189 - 196
  • [33] Hypercyclic composition operators on Hilbert spaces of analytic functions
    Mozhyrovska, Z. H.
    Zagorodnyuk, A. V.
    [J]. METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2014, 20 (03): : 284 - 291
  • [34] Hypercyclic composition operators on Hv0-spaces
    Miralles, Alejandro
    Wolf, Elke
    [J]. MATHEMATISCHE NACHRICHTEN, 2013, 286 (01) : 34 - 41
  • [35] Multi-hypercyclic operators are hypercyclic
    Alfredo Peris
    [J]. Mathematische Zeitschrift, 2001, 236 : 779 - 786
  • [36] Multi-hypercyclic operators are hypercyclic
    Peris, A
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2001, 236 (04) : 779 - 786
  • [37] CESARO-HYPERCYCLIC AND HYPERCYCLIC OPERATORS
    El Berrag, Mohammed
    Tajmouati, Abdelaziz
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 557 - 563
  • [38] Convolution Operators on Banach-Orlicz Algebras
    Ebadian, A.
    Jabbari, A.
    [J]. ANALYSIS MATHEMATICA, 2020, 46 (02) : 243 - 264
  • [39] A-Ergodicity of Convolution Operators in Group Algebras
    Mustafayev, H.
    Huseynli, A.
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (02) : 110 - 115
  • [40] Biprojectivity and biflatness for convolution algebras of nuclear operators
    Pirkovskii, AY
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (03): : 445 - 455