Hypercyclic algebras for convolution and composition operators

被引:6
|
作者
Bes, J. [1 ]
Conejero, J. A. [2 ]
Papathanasiou, D. [1 ]
机构
[1] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[2] Univ Politecn Valencia, Inst Univ Matemat Pura & Aplicada, E-46022 Valencia, Spain
关键词
Hypercyclic algebras; Convolution operators; Composition operators; Hypercyclic subspaces;
D O I
10.1016/j.jfa.2018.02.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an alternative proof to those by Shkarin and by Bayart and Matheron that the operator D of complex differentiation supports a hypercyclic algebra on the space of entire functions. In particular we obtain hypercyclic algebras for many convolution operators not induced by polynomials, such as cos(D), De(D), or e(D) - aI, where 0 < a <= 1. In contrast, weighted composition operators on function algebras of analytic functions on a plane domain fail to support supercyclic algebras. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:2884 / 2905
页数:22
相关论文
共 50 条
  • [1] Convolution operators supporting hypercyclic algebras
    Bes, Juan
    Alberto Conejero, J.
    Papathanasiou, Dimitris
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 445 (02) : 1232 - 1238
  • [2] Hypercyclic algebras for convolution operators of unimodular constant term
    Bes, J.
    Ernst, R.
    Prieto, A.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (01)
  • [3] HYPERCYCLIC ALGEBRAS FOR D-MULTIPLES OF CONVOLUTION OPERATORS
    Bernal-Gonzalez, Luis
    del Carmen Calderon-Moreno, Maria
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (02) : 647 - 653
  • [4] HYPERCYCLIC ALGEBRAS FOR CONVOLUTION OPERATORS WITH LONG ARITHMETIC PROGRESSIONS IN THEIR ZERO SETS
    Walmsley, David
    [J]. REAL ANALYSIS EXCHANGE, 2023, 48 (02) : 395 - 407
  • [5] Hypercyclic and chaotic convolution operators
    Bonet, J
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 253 - 262
  • [6] MULTIPLICATIVE STRUCTURES OF HYPERCYCLIC FUNCTIONS FOR CONVOLUTION OPERATORS
    Bernal-Gonzalez, Luis
    Alberto Conejero, J.
    Costakis, George
    Seoane-Sepulveda, Juan B.
    [J]. JOURNAL OF OPERATOR THEORY, 2018, 80 (01) : 213 - 224
  • [7] HYPERCYCLIC CONVOLUTION OPERATORS ON SPACES OF ENTIRE FUNCTIONS
    Favaro, Vinicius V.
    Mujica, Jorge
    [J]. JOURNAL OF OPERATOR THEORY, 2016, 76 (01) : 141 - 158
  • [8] Supercyclic and hypercyclic non-convolution operators
    Petersson, Henrik
    [J]. JOURNAL OF OPERATOR THEORY, 2006, 55 (01) : 135 - 151
  • [9] Algebrable sets of hypercyclic vectors for convolution operators
    Bes, Juan
    Papathanasiou, Dimitris
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2020, 238 (01) : 91 - 119
  • [10] Algebrable sets of hypercyclic vectors for convolution operators
    Juan Bès
    Dimitris Papathanasiou
    [J]. Israel Journal of Mathematics, 2020, 238 : 91 - 119