The nonlinear dynamic responses of a nanocomposite organic solar cell (NCOSC) are developed through the classical plate theory. The investigated NCOSC consists of five layers which are including Al, P3HT: PCBM, PEDOT: PSS, IOT and glass. A uniformly distributed external excitation is exerted on the simply supported NCOSC. The impacts of the Winkler-Pastemak elastic foundation, thermal environment and damping on the nonlinear dynamic responses of the NCOSC are investigated. The equations of motion and geometric compatibility of the NCOSC with the consideration of the von Karman nonlinearity are derived. The governing equation of the dynamic system is formulated by employing the Galerkin and the fourth-order Runge-Kutta methods. Several numerical experiments are thoroughly presented to report the effects of damping ratio, temperature variations, and elastic foundation parameters on the frequency amplitude curves and nonlinear dynamic response of the NCOSC. The numerical studies indicate that the existence of the Winkler-Pasternak elastic foundation effectively reduces the dynamic response of the NCOSC. In addition, the damping and thermal variation depress the vibration of the NCOSC but with relatively less efficiency compared with the Winkler- Pasternak elastic foundation.
机构:
Cent South Univ, Sch Civil Engn, Changsha, Peoples R China
Changan Univ, Sch Sci, Xian, Peoples R ChinaCent South Univ, Sch Civil Engn, Changsha, Peoples R China
Ma, Wei-Li
Li, Xian-Fang
论文数: 0引用数: 0
h-index: 0
机构:
Cent South Univ, Sch Civil Engn, Changsha, Peoples R China
Cent South Univ, Sch Civil Engn, Changsha 410075, Peoples R ChinaCent South Univ, Sch Civil Engn, Changsha, Peoples R China