Cubic fields with a power basis

被引:3
|
作者
Spearman, BK [1 ]
Williams, KS
机构
[1] Okanagan Univ Coll, Dept Math & Stat, Kelowna, BC V1V 1V7, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
关键词
cubic fields; power bases;
D O I
10.1216/rmjm/1020171683
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that there exist infinitely many cubic fields L with a power basis such that the splitting field AT of L contains a given quadratic field K.
引用
下载
收藏
页码:1103 / 1109
页数:7
相关论文
共 50 条
  • [1] On Power Basis of a Class of Number Fields
    Jakhar, Anuj
    Kaur, Sumandeep
    Kumar, Surender
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [2] A(4)-SEXTIC FIELDS WITH A POWER BASIS
    Eloff, Daniel
    Spearman, Blair K.
    Williams, Kenneth S.
    MISSOURI JOURNAL OF MATHEMATICAL SCIENCES, 2007, 19 (03) : 188 - 194
  • [3] On Power Basis of a Class of Number Fields
    Anuj Jakhar
    Sumandeep Kaur
    Surender Kumar
    Mediterranean Journal of Mathematics, 2023, 20
  • [4] COMPUTING ALL POWER INTEGRAL BASES OF CUBIC FIELDS
    GAAL, I
    SCHULTE, N
    MATHEMATICS OF COMPUTATION, 1989, 53 (188) : 689 - 696
  • [5] THE CHARACTERIZATION OF CYCLIC CUBIC FIELDS WITH POWER INTEGRAL BASES
    Kashio, Tomokazu
    Sekigawa, Ryutaro
    KODAI MATHEMATICAL JOURNAL, 2021, 44 (02) : 290 - 306
  • [6] On power basis of a class of algebraic number fields
    Jhorar, Bablesh
    Khanduja, Sudesh K.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (08) : 2317 - 2321
  • [7] ON BIQUADRATIC FIELDS THAT ADMIT UNIT POWER INTEGRAL BASIS
    Pethoe, A.
    Ziegler, V.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (03) : 221 - 241
  • [8] ON RELATIVE POWER INTEGRAL BASIS OF A FAMILY OF NUMBERS FIELDS
    Soullami, Abderazak
    Sahmoudi, Mohammed
    Boughaleb, Omar
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2021, 51 (04) : 1443 - 1451
  • [9] On biquadratic fields that admit unit power integral basis
    Attila Pethő
    Volker Ziegler
    Acta Mathematica Hungarica, 2011, 133 : 221 - 241
  • [10] Power integral bases in cubic and quartic extensions of real quadratic fields
    Gaal, Istvan
    Remete, Laszlo
    ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (3-5): : 413 - 429