ON RELATIVE POWER INTEGRAL BASIS OF A FAMILY OF NUMBERS FIELDS

被引:4
|
作者
Soullami, Abderazak [1 ]
Sahmoudi, Mohammed [2 ]
Boughaleb, Omar [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci, Dept Math, Fes, Morocco
[2] Ibn Tofail Univ, Natl Sch Appl Sci, Lab Engn Sci, Kenitra, Morocco
关键词
discrete valuation ring; Dedekind ring; monogeneity; relative integral basis; discriminant;
D O I
10.1216/rmj.2021.51.1443
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a number field with ring of integers R and L = K (alpha) where alpha satisfies the irreducible polynomial P (X) = X-3n + aX(3s) - b of R[X] (n, s is an element of N, n > s). We give necessary and sufficient conditions that involve only a, b, s, n to study the monogeneity of L over K. We also present some applications, giving integral bases of some extensions of degree 2 . 3(n), as well, we give their absolute discriminant.
引用
收藏
页码:1443 / 1451
页数:9
相关论文
共 50 条
  • [1] On a family of biquadratic fields that do not admit a unit power integral basis
    Odjoumani, Japhet
    Togbe, Alain
    Ziegler, Volker
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 1 - 19
  • [2] Computing relative power integral bases in a family of quartic extensions of imaginary quadratic fields
    Franusic, Zrinka
    Jadrijevic, Borka
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2018, 92 (3-4): : 293 - 315
  • [3] ON RELATIVE PURE CYCLIC FIELDS WITH POWER INTEGRAL BASES
    Sahmoudi, Mohammed
    Charkani, Mohamed E.
    MATHEMATICA BOHEMICA, 2023, 148 (01): : 117 - 128
  • [4] ON RELATIVE PURE CYCLIC FIELDS WITH POWER INTEGRAL BASES
    SAHMOUDI, M. O. H. A. M. M. E. D.
    CHARKANI, M. O. H. A. M. E. D. E.
    MATHEMATICA BOHEMICA, 2022, : 117 - 128
  • [5] ON BIQUADRATIC FIELDS THAT ADMIT UNIT POWER INTEGRAL BASIS
    Pethoe, A.
    Ziegler, V.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (03) : 221 - 241
  • [6] On biquadratic fields that admit unit power integral basis
    Attila Pethő
    Volker Ziegler
    Acta Mathematica Hungarica, 2011, 133 : 221 - 241
  • [7] EXISTENCE OF RELATIVE INTEGRAL BASIS OVER QUADRATIC FIELDS AND POLYA PROPERTY
    Maarefparvar, A.
    ACTA MATHEMATICA HUNGARICA, 2021, 164 (02) : 593 - 598
  • [8] Power integral bases in the family of simplest quartic fields
    Olajos, P
    EXPERIMENTAL MATHEMATICS, 2005, 14 (02) : 129 - 132
  • [9] Power integral bases in a parametric family of sextic fields
    Olajos, P
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2001, 58 (04): : 779 - 790
  • [10] ON A RELATIVE NORMAL INTEGRAL BASIS PROBLEM OVER ABELIAN NUMBER-FIELDS
    ICHIMURA, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1993, 69 (10) : 413 - 416