Challenges using data-driven methods and deep learning in optical engineering

被引:3
|
作者
Buquet, Julie [1 ,2 ]
Parent, Jocelyn [2 ]
Lalonde, Jean-Francois [1 ]
Thibault, Simon [1 ]
机构
[1] Univ Laval, 2325 Rue Univ, Quebec City, PQ, Canada
[2] Immervision, 2020 Blvd Robert Bourassa, Montreal, PQ, Canada
关键词
Computational optics; End-to-End design; Wide-angle systems; Learning-based PSF estimation; Distortion; Data-driven optical engineering;
D O I
10.1117/12.2636262
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data driven approaches have proven very efficient in many vision tasks and are now used for optical parameters optimization in application-specific camera design. A neural network is trained to estimate images or image quality indicators from the optical characteristics. The complexity and entanglement of such optical parameters raise new challenges we investigate in the case of wide-angle systems. We highlight them by establishing a data-driven prediction model of the RMS spot size from the distortion using mathematical or AI-based methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Data-Driven Prediction of Ship Destinations in the Harbor Area Using Deep Learning
    Kim, Kwang Il
    Lee, Keon Myung
    BIG DATA APPLICATIONS AND SERVICES 2017, 2019, 770 : 81 - 90
  • [22] Sensor Data-Driven UAV Anomaly Detection using Deep Learning Approach
    Galvan, Julio
    Raja, Ashok
    Li, Yanyan
    Yuan, Jiawei
    2021 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2021), 2021,
  • [23] Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review
    Strielkowski, Wadim
    Vlasov, Andrey
    Selivanov, Kirill
    Muraviev, Konstantin
    Shakhnov, Vadim
    ENERGIES, 2023, 16 (10)
  • [24] Estimation of data-driven streamflow predicting models using machine learning methods
    Siddiqi T.A.
    Ashraf S.
    Khan S.A.
    Iqbal M.J.
    Arabian Journal of Geosciences, 2021, 14 (11)
  • [25] Data-driven monitoring of the gearbox using multifractal analysis and machine learning methods
    Puchalski, Andrzej
    Komorska, Iwona
    III INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN ENGINEERING SCIENCE (CMES 18), 2019, 252
  • [26] Tackling the global challenges using data-driven innovations
    Shahriar Akter
    Saida Sultana
    Angappa Gunasekaran
    Ruwan J. Bandara
    Shah J Miah
    Annals of Operations Research, 2024, 333 : 517 - 532
  • [27] Complex Algorithms for Data-Driven Model Learning in Science and Engineering
    Montans, Francisco J.
    Chinesta, Francisco
    Gomez-Bombarelli, Rafael
    Kutz, J. Nathan
    COMPLEXITY, 2019, 2019
  • [28] Data-Driven Reinforcement Learning for Mission Engineering and Combat Simulation
    Henslee, Althea
    Shukla, Indu
    Dozier, Haley
    Hansen, Brandon
    Arnold, Thomas
    Jabour, Jo
    Thompson, Brianna
    Turner, Griffin
    White, Jules
    Dettwiller, Ian
    PROCEEDINGS OF THE IUTAM SYMPOSIUM ON OPTIMAL GUIDANCE AND CONTROL FOR AUTONOMOUS SYSTEMS 2023, 2024, 40 : 347 - 360
  • [29] Learning Data-Driven PCHD Models for Control Engineering Applications *
    Junker, Annika
    Timmermann, Julia
    Traechtler, Ansgar
    IFAC PAPERSONLINE, 2022, 55 (12): : 389 - 394
  • [30] Tackling the global challenges using data-driven innovations
    Akter, Shahriar
    Sultana, Saida
    Gunasekaran, Angappa
    Bandara, Ruwan J.
    Miah, Shah J.
    ANNALS OF OPERATIONS RESEARCH, 2024, 333 (2-3) : 517 - 532