Challenges using data-driven methods and deep learning in optical engineering

被引:3
|
作者
Buquet, Julie [1 ,2 ]
Parent, Jocelyn [2 ]
Lalonde, Jean-Francois [1 ]
Thibault, Simon [1 ]
机构
[1] Univ Laval, 2325 Rue Univ, Quebec City, PQ, Canada
[2] Immervision, 2020 Blvd Robert Bourassa, Montreal, PQ, Canada
关键词
Computational optics; End-to-End design; Wide-angle systems; Learning-based PSF estimation; Distortion; Data-driven optical engineering;
D O I
10.1117/12.2636262
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Data driven approaches have proven very efficient in many vision tasks and are now used for optical parameters optimization in application-specific camera design. A neural network is trained to estimate images or image quality indicators from the optical characteristics. The complexity and entanglement of such optical parameters raise new challenges we investigate in the case of wide-angle systems. We highlight them by establishing a data-driven prediction model of the RMS spot size from the distortion using mathematical or AI-based methods.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Data-Driven Requirements Engineering: Principles, Methods and Challenges
    Franch, Xavier
    [J]. RESEARCH CHALLENGES IN INFORMATION SCIENCE (RCIS 2020), 2020, 385 : 625 - 626
  • [2] Different data-driven prediction of global ionospheric TEC using deep learning methods
    Tang, Jun
    Ding, Mingfei
    Yang, Dengpan
    Fan, Cihang
    Khonsari, Nasim
    Mao, Wenfei
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 130
  • [3] Data-driven Modeling Technique for Optical Communications Based on Deep Learning
    Wang, Danshi
    Song, Yuchen
    Zhang, Min
    [J]. 2020 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE (ACP) AND INTERNATIONAL CONFERENCE ON INFORMATION PHOTONICS AND OPTICAL COMMUNICATIONS (IPOC), 2020,
  • [4] Data-driven Optical Fiber Channel Modeling: A Deep Learning Approach
    Wang, Danshi
    Song, Yuchen
    Li, Jin
    Qin, Jun
    Yang, Tao
    Zhang, Min
    Chen, Xue
    Boucouvalas, Anthony C.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (17) : 4730 - 4743
  • [5] Challenges of data-driven methods in product development
    Mehlstäubl J.
    Gadzo E.
    Atzberger A.
    Paetzold K.
    [J]. Konstruktion, 2022, 74 (06): : 60 - 66
  • [6] Data-driven design of thin-film optical systems using deep active learning
    Hong, Youngjoon
    Nicholls, David P.
    [J]. OPTICS EXPRESS, 2022, 30 (13) : 22901 - 22910
  • [7] Data-driven recipe completion using machine learning methods
    De Clercq, Marlies
    Stock, Michiel
    De Baets, Bernard
    Waegeman, Willem
    [J]. TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2016, 49 : 1 - 13
  • [8] Data-driven modeling and learning in science and engineering
    Montans, Francisco J.
    Chinesta, Francisco
    Gomez-Bombarelli, Rafael
    Kutz, J. Nathan
    [J]. COMPTES RENDUS MECANIQUE, 2019, 347 (11): : 845 - 855
  • [9] Data-driven traffic engineering: techniques, experiences and challenges
    Johansson, Mikael
    Gunnar, Anders
    [J]. 2006 3RD INTERNATIONAL CONFERENCE ON BROADBAND COMMUNICATIONS, NETWORKS AND SYSTEMS, VOLS 1-3, 2006, : 211 - +
  • [10] Leveraging advances in data-driven deep learning methods for hybrid epidemic modeling
    Chen, Shi
    Janies, Daniel
    Paul, Rajib
    Thill, Jean-Claude
    [J]. EPIDEMICS, 2024, 48