One-dimensional two-phase generalized Forchheimer flows of incompressible fluids

被引:11
|
作者
Hoang, Luan T. [1 ]
Ibragimov, Akif [1 ]
Kieu, Thinh T. [1 ]
机构
[1] Texas Tech Univ, Dept Math & Stat, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
Two-phase ows; Forchheimer; Porous media; Stability; IMMISCIBLE FLUIDS; EQUATIONS;
D O I
10.1016/j.jmaa.2012.12.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive a nonlinear system of parabolic equations to describe the one-dimensional two-phase generalized Forchheimer flows of incompressible, immiscible fluids in porous media, with the presence of capillary forces. Under relevant constraints on relative permeabilities and capillary pressure, non-constant steady state solutions are found and classified into sixteen types according to their monotonicity and asymptotic behavior. For a steady state whose saturation can never attain either value 0 or 1, we prove that it is stable with respect to a certain weight. This weight is a function comprised of the steady state, relative permeabilities and capillary pressure. The proof is based on specific properties of the steady state, weighted maximum principle and Bernstein's estimate. (C) 2012 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:921 / 938
页数:18
相关论文
共 50 条
  • [31] A hybrid scheme for computing incompressible two-phase flows
    Zhou Jun
    Cai Li
    Zhou Feng-Qi
    CHINESE PHYSICS B, 2008, 17 (05) : 1535 - 1544
  • [32] A zonal grid method for incompressible two-phase flows
    Dabonneville, F.
    Hecht, N.
    Reveillon, J.
    Pinon, G.
    Demoulin, F. X.
    COMPUTERS & FLUIDS, 2019, 180 : 22 - 40
  • [33] Transport of congestion in two-phase compressible/incompressible flows
    Degond, Pierre
    Minakowski, Piotr
    Zatorska, Ewelina
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 42 : 485 - 510
  • [34] Sharp numerical simulation of incompressible two-phase flows
    Theillard, Maxime
    Gibou, Frederic
    Saintillan, David
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 391 : 91 - 118
  • [35] Transient adaptivity applied to two-phase incompressible flows
    Compere, Gaeetan
    Marchandise, Emilie
    Remade, Jean-Francois
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (03) : 1923 - 1942
  • [36] Two-phase fluids in collision of incompressible inviscid fluids effluxing from two nozzles
    Wang, Yongfu
    Xiang, Wei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (11) : 6783 - 6830
  • [37] One-Dimensional Dynamics of Jet Flows of Elastic Fluids
    Entov, V.M.
    Kestenboim, Kh. S.
    Pokrovsky, S.V.
    Shugay, G.A.
    Fluid Dynamics, 1997, 32 (06): : 761 - 771
  • [38] One-Dimensional Dynamics of Jet Flows of Elastic Fluids
    Entov V.M.
    Kestenboim K.S.
    Pokrovsky S.V.
    Shugay G.A.
    Fluid Dynamics, 1997, 32 (6) : 761 - 771
  • [39] ASYMPTOTIC SOLUTIONS OF STABILITY OF ONE-DIMENSIONAL INCOMPRESSIBLE INVISCID FLOWS
    WASSERSTROM, E
    ISRAEL JOURNAL OF TECHNOLOGY, 1969, 7 (1-2): : 15 - +
  • [40] ON THE HYDRODYNAMICS OF TWO-DIMENSIONAL AND ONE-DIMENSIONAL FLUIDS
    ANDREEV, AF
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1980, 78 (05): : 2064 - 2072