Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter

被引:166
|
作者
Muliawan, Made Jaya [1 ]
Karimirad, Madjid [1 ,2 ]
Moan, Torgeir [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol, Ctr Ship & Ocean Struct CeSOS, NO-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Norwegian Res Ctr Offshore Wind Technol Nowitech, NO-7491 Trondheim, Norway
关键词
Combined wind and wave powers; Floating wind turbine; Wave energy converter; Dynamic response; Power performance;
D O I
10.1016/j.renene.2012.05.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind turbines need to be spaced at a distance of the order of 1 km apart to reduce the effect of aerodynamic wakes. To increase the density of the power production in the farm, the deployment of wave energy converters (WECs) in the spaces between FWTs could be considered. However, the cost of energy from WECs is still very large. Therefore, the deployments of the WECs will reduce the economic value of the total project. In the present paper, a combined concept involving a combination of Spar-type FWTs and an axi-symmetric two-body WECs is considered. Compared with segregated deployments of FWTs and WECs, this combined concept would imply reduced capital costs of the total project because it will reduce the number of power cables, mooring line and the structural mass of the WECs. However, the effect of the addition of a Torus (donut-shape heaving buoy) on the FWTs motions as well as the power production should first be investigated. In the present study, coupled (wave- and wind-induced response-mooring) analysis is performed using SIMO/TDHMILL3D in the time domain to study the motion behaviour of the combined concept and to estimate the power production from both FWT and WEC under operational conditions. Mooring tension in the combined concept is also compared with the mooring tension in the Spar-type FWT alone. Hydrodynamic loads are determined using Hydrol). The validated simplified method called TDHMILL is implemented to calculate the aerodynamic forces as a function of the relative wind velocity. The analysis is performed for several operational conditions according to metocean data taken in the Statfjord field in the North Sea. Finally, the behaviour of the combined concept under operational conditions is assessed, and it is shown to result in a positive synergy between wind and wave energy generation in terms of both capital investment and power production. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 50 条
  • [11] MODEL TESTS OF A SPAR-TYPE FLOATING WIND TURBINE UNDER WIND/WAVE LOADS
    Duan, Fei
    Hu, Zhiqiang
    Wang, Jin
    PROCEEDINGS OF THE ASME 34TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2015, VOL 9, 2015,
  • [12] LONG-TERM STOCHASTIC DYNAMIC ANALYSIS OF A COMBINED FLOATING SPAR-TYPE WIND TURBINE AND WAVE ENERGY CONVERTER (STC) SYSTEM FOR MOORING FATIGUE DAMAGE AND POWER PREDICTION
    Ren, Nianxin
    Gao, Zhen
    Moan, Torgeir
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 9A: OCEAN RENEWABLE ENERGY, 2014,
  • [13] Research on Dynamic Response Characteristics of 6 MW Spar-Type Floating Offshore Wind Turbine
    孟龙
    何炎平
    周涛
    赵永生
    刘亚东
    JournalofShanghaiJiaotongUniversity(Science), 2018, 23 (04) : 505 - 514
  • [14] The dynamic response of a Spar-type floating wind turbine under freak waves with different properties
    Li, Yan
    Li, Haoran
    Wang, Zhenkui
    Li, Yaolong
    Wang, Bin
    Tang, Yougang
    MARINE STRUCTURES, 2023, 91
  • [15] Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables
    Jeon, S. H.
    Cho, Y. U.
    Seo, M. W.
    Cho, J. R.
    Jeong, W. B.
    OCEAN ENGINEERING, 2013, 72 : 356 - 364
  • [16] Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions
    WANG Han
    HU Zhi-qiang
    MENG Xiang-yin
    China Ocean Engineering, 2018, 32 (03) : 256 - 265
  • [17] Experimental study on dynamic responses of a spar-type floating offshore wind turbine
    Chen, Jianbing
    Liu, Zenghui
    Song, Yupeng
    Peng, Yongbo
    Li, Jie
    RENEWABLE ENERGY, 2022, 196 : 560 - 578
  • [18] Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions
    Han Wang
    Zhi-qiang Hu
    Xiang-yin Meng
    China Ocean Engineering, 2018, 32 : 256 - 265
  • [19] Dynamic Performance Investigation of A Spar-Type Floating Wind Turbine Under Different Sea Conditions
    Wang Han
    Hu Zhi-qiang
    Meng Xiang-yin
    CHINA OCEAN ENGINEERING, 2018, 32 (03) : 256 - 265
  • [20] Wind-wave induced dynamic response analysis for motions and mooring loads of a spar-type offshore floating wind turbine
    马钰
    胡志强
    肖龙飞
    JournalofHydrodynamics, 2014, 26 (06) : 865 - 874