Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter

被引:166
|
作者
Muliawan, Made Jaya [1 ]
Karimirad, Madjid [1 ,2 ]
Moan, Torgeir [1 ,2 ]
机构
[1] Norwegian Univ Sci & Technol, Ctr Ship & Ocean Struct CeSOS, NO-7491 Trondheim, Norway
[2] Norwegian Univ Sci & Technol, Norwegian Res Ctr Offshore Wind Technol Nowitech, NO-7491 Trondheim, Norway
关键词
Combined wind and wave powers; Floating wind turbine; Wave energy converter; Dynamic response; Power performance;
D O I
10.1016/j.renene.2012.05.025
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wind turbines need to be spaced at a distance of the order of 1 km apart to reduce the effect of aerodynamic wakes. To increase the density of the power production in the farm, the deployment of wave energy converters (WECs) in the spaces between FWTs could be considered. However, the cost of energy from WECs is still very large. Therefore, the deployments of the WECs will reduce the economic value of the total project. In the present paper, a combined concept involving a combination of Spar-type FWTs and an axi-symmetric two-body WECs is considered. Compared with segregated deployments of FWTs and WECs, this combined concept would imply reduced capital costs of the total project because it will reduce the number of power cables, mooring line and the structural mass of the WECs. However, the effect of the addition of a Torus (donut-shape heaving buoy) on the FWTs motions as well as the power production should first be investigated. In the present study, coupled (wave- and wind-induced response-mooring) analysis is performed using SIMO/TDHMILL3D in the time domain to study the motion behaviour of the combined concept and to estimate the power production from both FWT and WEC under operational conditions. Mooring tension in the combined concept is also compared with the mooring tension in the Spar-type FWT alone. Hydrodynamic loads are determined using Hydrol). The validated simplified method called TDHMILL is implemented to calculate the aerodynamic forces as a function of the relative wind velocity. The analysis is performed for several operational conditions according to metocean data taken in the Statfjord field in the North Sea. Finally, the behaviour of the combined concept under operational conditions is assessed, and it is shown to result in a positive synergy between wind and wave energy generation in terms of both capital investment and power production. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:47 / 57
页数:11
相关论文
共 50 条
  • [1] DYNAMIC RESPONSE OF A SPAR-TYPE FLOATING WIND TURBINE AT POWER GENERATION
    Utsunomiya, Tomoaki
    Yoshida, Shigeo
    Kiyoki, Soichiro
    Sato, Iku
    Lshida, Shigesuke
    33RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2014, VOL 7: OCEAN SPACE UTILIZATION, 2014,
  • [2] DYNAMIC RESPONSE OF SPAR-TYPE FLOATING OFFSHORE WIND TURBINE IN FREAK WAVE
    Tang, Yougang
    Li, Yan
    Xie, Peng
    Qu, Xiaoqi
    Wang, Bin
    PROCEEDINGS OF THE ASME 38TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, 2019, VOL 10, 2019,
  • [3] Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes
    Muliawan, Made Jaya
    Karimirad, Madjid
    Gao, Zhen
    Moan, Torgeir
    OCEAN ENGINEERING, 2013, 65 : 71 - 82
  • [4] STC (SPAR-TORUS COMBINATION): A COMBINED SPAR-TYPE FLOATING WIND TURBINE AND LARGE POINT ABSORBER FLOATING WAVE ENERGY CONVERTER - PROMISING AND CHALLENGING
    Muliawan, Made Jaya
    Karimirad, Madjid
    Moan, Torgeir
    Gao, Zhen
    PROCEEDINGS OF THE ASME 31ST INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARTIC ENGINEERING, VOL 7, 2013, : 667 - 676
  • [5] Dynamic Response of SPAR-Type Floating Offshore Wind Turbine under Wave Group Scenarios
    Liu, Baolong
    Yu, Jianxing
    ENERGIES, 2022, 15 (13)
  • [6] ASSESSING THE IMPACT OF INTEGRATING ENERGY STORAGE ON THE DYNAMIC RESPONSE OF A SPAR-TYPE FLOATING WIND TURBINE
    Cutajar, Charise
    Sant, Tonio
    Farrugia, Robert N.
    Buhagiar, Daniel
    PROCEEDINGS OF THE ASME 2ND INTERNATIONAL OFFSHORE WIND TECHNICAL CONFERENCE, 2019, 2020,
  • [7] Effects of incident wind/wave directions on dynamic response of a SPAR-type floating offshore wind turbine system
    Guoqin Lyu
    Huiqin Zhang
    Jiachun Li
    Acta Mechanica Sinica, 2019, 35 : 954 - 963
  • [8] Effects of incident wind/wave directions on dynamic response of a SPAR-type floating offshore wind turbine system
    Lyu, Guoqin
    Zhang, Huiqin
    Li, Jiachun
    ACTA MECHANICA SINICA, 2019, 35 (05) : 954 - 963
  • [9] Dynamic Response of a SPAR-Type Floating Wind Turbine Foundation with Taut Mooring System
    Xiang, Gong
    Xiang, Xianbo
    Yu, Xiaochuan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2022, 10 (12)
  • [10] Coupled dynamic analysis of spar-type floating wind turbine under different wind and wave loading
    Rony J.S.
    Karmakar D.
    Soares C.G.
    Marine Systems and Ocean Technology, 2021, 16 (3-4) : 169 - 198