A genome-wide analysis of carbon catabolite repression in Schizosaccharomyces pombe

被引:19
|
作者
Vassiliadis, Dane [1 ,2 ]
Wong, Koon Ho [3 ,4 ]
Andrianopoulos, Alex [1 ]
Monahan, Brendon J. [1 ,2 ,5 ]
机构
[1] Univ Melbourne, Sch Biosci, Genet Genom & Syst Biol, Parkville, Vic, Australia
[2] CSIRO, Parkville, Vic, Australia
[3] Univ Macau, Fac Hlth Sci, Macau, Peoples R China
[4] Univ Macau, Inst Translat Med, Macau, Peoples R China
[5] Canc Therapeut CTx, Parkville, Vic, Australia
关键词
Schizosaccharomyces pombe; Transcriptional regulation; Carbon metabolism; Carbon catabolite repression; Scr1; Tup11; Rst2; RNA-seq; ChIP-seq Background; ATF1 TRANSCRIPTION FACTOR; ZINC-FINGER PROTEIN; FISSION YEAST; SEXUAL DEVELOPMENT; KINASE-A; ASPERGILLUS-NIDULANS; GENE-EXPRESSION; CO-REPRESSOR; SPC1; KINASE; GLUCOSE;
D O I
10.1186/s12864-019-5602-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Optimal glucose metabolism is central to the growth and development of cells. In microbial eukaryotes, carbon catabolite repression (CCR) mediates the preferential utilization of glucose, primarily by repressing alternate carbon source utilization. In fission yeast CCR is mediated by transcriptional repressors Scr1 and the Tup/Ssn6 complex, with the Rst2 transcription factor important for activation of gluconeogenesis and sexual differentiation genes upon derepression. Through genetic and genome-wide methods, this study aimed to comprehensively characterize CCR in fission yeast by identifying the genes and biological processes that are regulated by Scr1, Tup/Ssn6 and Rst2, the core CCR machinery. Results: The transcriptional response of fission yeast to glucose-sufficient or glucose-deficient growth conditions in wild type and CCR mutant cells was determined by RNA-seq and ChIP-seq. Scr1 was found to regulate genes involved in carbon metabolism, hexose uptake, gluconeogenesis and the TCA cycle. Surprisingly, a role for Scr1 in the suppression of sexual differentiation was also identified, as homothallic scr1 deletion mutants showed ectopic meiosis in carbon and nitrogen rich conditions. ChIP-seq characterised the targets of Tup/Ssn6 and Rst2 identifying regulatory roles within and independent of CCR. Finally, a subset of genes bound by all three factors was identified, implying that regulation of certain loci may be modulated in a competitive fashion between the Scr1, Tup/Ssn6 repressors and the Rst2 activator. Conclusions: By identifying the genes directly and indirectly regulated by Scr1, Tup/Ssn6 and Rst2, this study comprehensively defined the gene regulatory networks of CCR in fission yeast and revealed the transcriptional complexities governing this system.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Integrated map of the Schizosaccharomyces pombe genome
    Igor Garkavtsev
    Toru Mizukami
    Chromosoma, 1997, 106 : 254 - 265
  • [32] Integrated map of the Schizosaccharomyces pombe genome
    Garkavtsev, I
    Mizukami, T
    CHROMOSOMA, 1997, 106 (04) : 254 - 265
  • [33] CARBON CATABOLITE REPRESSION IN YEAST
    GANCEDO, JM
    EUROPEAN JOURNAL OF BIOCHEMISTRY, 1992, 206 (02): : 297 - 313
  • [34] Carbon catabolite repression in bacteria
    Stülke, J
    Hillen, W
    CURRENT OPINION IN MICROBIOLOGY, 1999, 2 (02) : 195 - 201
  • [35] Yeast carbon catabolite repression
    Gancedo, JM
    MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 1998, 62 (02) : 334 - +
  • [36] A Genome-Wide Screen for Wortmannin-Resistant Mutants in Schizosaccharomyces pombe: The Phosphorylation-Impaired Mutants Are Resistant to Signaling Defect
    Yilmazer, Merve
    Kartal, Burcu
    Tarhan, Cagatay
    Ozarabaci, Ilayda
    Akcaalan, Sedef
    Ozkan, Egemen
    Uzuner, Semian Karaer
    Arican, Ercan
    Palabiyik, Bedia
    DNA AND CELL BIOLOGY, 2019, 38 (12) : 1427 - 1436
  • [37] Carbon Catabolite Repression in Bacillus subtilis: Quantitative Analysis of Repression Exerted by Different Carbon Sources
    Singh, Kalpana D.
    Schmalisch, Matthias H.
    Stuelke, Joerg
    Goerke, Boris
    JOURNAL OF BACTERIOLOGY, 2008, 190 (21) : 7275 - 7284
  • [38] Correction: Corrigendum: The genome sequence of Schizosaccharomyces pombe
    V. Wood
    R. Gwilliam
    M.-A. Rajandream
    M. Lyne
    R. Lyne
    A. Stewart
    J. Sgouros
    N. Peat
    J. Hayles
    S. Baker
    D. Basham
    S. Bowman
    K. Brooks
    D. Brown
    S. Brown
    T. Chillingworth
    C. Churcher
    M. Collins
    R. Connor
    A. Cronin
    P. Davis
    T. Feltwell
    A. Fraser
    S. Gentles
    A. Goble
    N. Hamlin
    D. Harris
    J. Hidalgo
    G. Hodgson
    S. Holroyd
    T. Hornsby
    S. Howarth
    E. J. Huckle
    S. Hunt
    K. Jagels
    K. James
    L. Jones
    M. Jones
    S. Leather
    S. McDonald
    J. McLean
    P. Mooney
    S. Moule
    K. Mungall
    L. Murphy
    D. Niblett
    C. Odell
    K. Oliver
    S. O'Neil
    D. Pearson
    Nature, 2003, 421 (6918) : 94 - 94
  • [39] DNA replication origins in the Schizosaccharomyces pombe genome
    Dai, JL
    Chuang, RY
    Kelly, TJ
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (02) : 337 - 342
  • [40] Determinants of RNA metabolism in the Schizosaccharomyces pombe genome
    Eser, Philipp
    Wachutka, Leonhard
    Maier, Kerstin C.
    Demel, Carina
    Boroni, Mariana
    Iyer, Srignanakshi
    Cramer, Patrick
    Gagneur, Julien
    MOLECULAR SYSTEMS BIOLOGY, 2016, 12 (02)