A Kind of Generalized Inverse Eigenvalue Problem of a Specially Structured Jacobi Matrix

被引:0
|
作者
Huang, Xian-Tong [1 ]
机构
[1] Gannan Normal Univ, Coll Math & Comp Sci, Ganzhou 341000, Peoples R China
关键词
Specially structured Jacobi matrix; Generalized inverse eigenvalue problem; element constraint;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discussed the problem of constructing a specially structured Jacobi matrix, which its elements are linearly dependent, with its part of elements and part of eigenvectors. The solvability and the expression of solution are derived. The numerical algorithms and numerical example is given.
引用
收藏
页码:87 / 90
页数:4
相关论文
共 50 条
  • [11] A Jacobi matrix inverse eigenvalue problem with mixed data
    Wei, Ying
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (10) : 2774 - 2783
  • [12] Inverse eigenvalue problem for Jacobi matrix and nonnegative matrices
    Zadeh, Somayeh Zangoei
    Rivaz, Azim
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (05)
  • [13] Inverse Generalized Eigenvalue Problem for Generalized Jacobi Matrices With Linear Relation
    Li, Zhibin
    Chang, Jing
    ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 6: MODELLING & SIMULATION INDUSTRIAL ENGINEERING & MANAGEMENT, 2010, : 369 - 372
  • [14] THE INVERSE EIGENVALUE PROBLEM FOR GENERALIZED JACOBI MATRICES WITH FUNCTIONAL RELATIONSHIP
    Li, Zhibin
    Wang, Yunfei
    Li, Shuai
    2015 12TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2015, : 473 - 475
  • [15] Inverse Eigenvalue Problem of Generalized Periodic Jacobi Matrices with Edges
    Jiang, M.
    Yang, J.
    Zuo, S.
    Li, Z.
    Jiao, L.
    2021 3rd International Academic Exchange Conference on Science and Technology Innovation, IAECST 2021, 2021, : 211 - 214
  • [16] Filter synthesis as a Structured Inverse Generalized Eigenvalue Problem
    Bryndza, Przemyslaw
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE FILTER WORKSHOP (IMFW), 2021, : 175 - 177
  • [17] An inverse eigenvalue problem for Jacobi matrix with mixed given data
    Wu, Xiaoqian
    Jiang, Erxiong
    ADVANCES IN MATRIX THEORY AND APPLICATIONS, 2006, : 230 - 233
  • [18] A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM
    侯文渊
    蒋尔雄
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2005, (02) : 23 - 35
  • [19] On sufficient and necessary conditions for the Jacobi matrix inverse eigenvalue problem
    Linzhang Lu
    Michael K. Ng
    Numerische Mathematik, 2004, 98 : 167 - 176
  • [20] New algorithm for solving the inverse eigenvalue problem of a Jacobi matrix
    Nanjing Hangkong Hangtian Daxue Xuebao, 6 (766-771):