Mechanical and self-healing behavior of low carbon engineered cementitious composites reinforced with PP-fibers

被引:123
|
作者
Zhu, He [1 ]
Zhang, Duo [1 ]
Wang, Tianyu [1 ,2 ]
Wu, Haoliang [1 ]
Li, Victor C. [1 ]
机构
[1] Univ Michigan, Dept Civil & Environm Engn, Ann Arbor, MI 48109 USA
[2] China Univ Geosci Wuhan, Coll Engn, Wuhan, Hubei, Peoples R China
关键词
Engineered Cementitious Composites (ECC); Limestone calcined clay cement (LC3); Metakaolin; Limestone; Durability; CALCINED CLAY CEMENT; PORTLAND-CEMENT; FLY-ASH; DESIGN; ECC; PERFORMANCE; HYDRATION; CONCRETE; METAKAOLIN; COMPATIBILITY;
D O I
10.1016/j.conbuildmat.2020.119805
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
While the ultrahigh tensile ductility and superior durability of Engineered Cementitious Composites (ECC) have been demonstrated, the relatively high energy and carbon intensity, as well as high material cost present potential impediments to broader ECC applications. The objective of this research is to develop a more sustainable and cost-effective ECC. The ordinary Portland cement (OPC) and the commonly used PVA fiber in conventional ECC were replaced by limestone calcined clay cement (LC3) and polypropylene (PP) fiber, respectively. The ECC compressive strength, tensile stress-strain relationship, and microcrack self-healing behavior were studied at three water to binder ratios (0.3, 0.2, 0.16). The novel LC3-PP-ECC showed a tensile strain capacity of greater than 6% and an intrinsically tight crack width below 82 mu m when loaded to 1% tensile strain. Further, the LC3-PP-ECC demonstrated efficient recovery of the composite tensile ductility and ultimate tensile strength through self-healing. Compared to typical ECC made with OPC and PVA fiber, the material cost, embodied energy and carbon footprint of LC3-PP-ECC are reduced by 61%, 45%, and 48%, respectively. The superior mechanical properties and durability combined with the low environmental impact and cost for material production promote LC3-PP-ECC as a sustainable material for structural and non-structural applications. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Review and Outlook of Self-Sensing, Self-Healing, Piezoelectric Pozzolans, and Piezoelectric Fibers in “Smart” Engineered Cementitious Composites (ECC)
    Beyza Fahriye Aygun
    Zeynep Bastan
    Turhan Bilir
    Iranian Journal of Science and Technology, Transactions of Civil Engineering, 2023, 47 : 639 - 662
  • [42] Review and Outlook of Self-Sensing, Self-Healing, Piezoelectric Pozzolans, and Piezoelectric Fibers in "Smart" Engineered Cementitious Composites (ECC)
    Aygun, Beyza Fahriye
    Bastan, Zeynep
    Bilir, Turhan
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY-TRANSACTIONS OF CIVIL ENGINEERING, 2023, 47 (02) : 639 - 662
  • [43] Effect of self-healing on water permeability and mechanical property of Medium-Early-Strength Engineered Cementitious Composites
    Ma, Hui
    Qian, Shunzhi
    Zhang, Zhigang
    CONSTRUCTION AND BUILDING MATERIALS, 2014, 68 : 92 - 101
  • [44] Mechanical properties of a self-healing fibre reinforced epoxy composites
    Lee, J.
    Bhattacharyya, D.
    Zhang, M. Q.
    Yuan, Y. C.
    COMPOSITES PART B-ENGINEERING, 2015, 78 : 515 - 519
  • [45] Self-healing performance of aged cementitious composites
    Yildirim, Gurkan
    Khiavi, Arash Hamidzadeh
    Yesilmen, Seda
    Sahmaran, Mustafa
    CEMENT & CONCRETE COMPOSITES, 2018, 87 : 172 - 186
  • [46] Characteristics of Self-Healing Microcapsules for Cementitious Composites
    Qianjin Mao
    Xiaojuan Feng
    Peng Liang
    Rui Wang
    Ziming Wang
    Suping Cui
    Mingzhang Lan
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2018, 33 : 1108 - 1112
  • [47] Characteristics of Self-Healing Microcapsules for Cementitious Composites
    Mao Qianjin
    Feng Xiaojuan
    Liang Peng
    Wang Rui
    Wang Ziming
    Cui Suping
    Lan Mingzhang
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2018, 33 (05): : 1108 - 1112
  • [48] Characteristics of Self-Healing Microcapsules for Cementitious Composites
    毛倩瑾
    FENG Xiaojuan
    LIANG Peng
    WANG Rui
    WANG Ziming
    CUI Suping
    LAN Mingzhang
    JournalofWuhanUniversityofTechnology(MaterialsScience), 2018, 33 (05) : 1108 - 1112
  • [49] Self-Healing Characterization of Engineered Cementitious Composite Materials
    Kan, Li-Li
    Shi, Hui-Sheng
    Sakulich, Aaron R.
    Li, Victor C.
    ACI MATERIALS JOURNAL, 2010, 107 (06) : 617 - 624
  • [50] Modeling of self-healing polymer composites reinforced with nanoporous glass fibers
    Privman, Vladimir
    Dementsov, Alexander
    Sokolov, Igor
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2007, 4 (01) : 190 - 193