Multimodel estimates of intercontinental source-receptor relationships for ozone pollution

被引:325
|
作者
Fiore, A. M. [1 ]
Dentener, F. J. [2 ]
Wild, O. [3 ]
Cuvelier, C. [2 ]
Schultz, M. G. [4 ]
Hess, P. [5 ]
Textor, C. [6 ,7 ]
Schulz, M. [7 ]
Doherty, R. M. [8 ]
Horowitz, L. W. [1 ]
MacKenzie, I. A. [8 ]
Sanderson, M. G. [9 ]
Shindell, D. T. [10 ]
Stevenson, D. S. [8 ]
Szopa, S. [7 ]
Van Dingenen, R. [2 ]
Zeng, G. [11 ]
Atherton, C. [12 ]
Bergmann, D. [12 ]
Bey, I. [13 ]
Carmichael, G. [14 ]
Collins, W. J. [9 ]
Duncan, B. N. [15 ]
Faluvegi, G. [10 ]
Folberth, G. [13 ]
Gauss, M. [16 ]
Gong, S. [17 ]
Hauglustaine, D. [7 ,18 ]
Holloway, T. [19 ]
Isaksen, I. S. A. [16 ]
Jacob, D. J. [28 ]
Jonson, J. E. [21 ]
Kaminski, J. W. [22 ]
Keating, T. J. [23 ]
Lupu, A. [22 ]
Marmer, E. [2 ]
Montanaro, V. [24 ]
Park, R. J. [20 ,28 ]
Pitari, G. [24 ]
Pringle, K. J. [9 ]
Pyle, J. A. [11 ]
Schroeder, S. [4 ]
Vivanco, M. G. [25 ]
Wind, P. [21 ]
Wojcik, G. [26 ]
Wu, S. [28 ]
Zuber, A. [27 ]
机构
[1] NOAA, Geophys Fluid Dynam Lab, Princeton, NJ 08542 USA
[2] Commiss European Communities, Inst Environm & Sustainabil, DG Joint Res Ctr, I-21020 Ispra, Italy
[3] Univ Lancaster, Dept Environm Sci, Lancester Environm Ctr, Lancaster LA1 4YQ, England
[4] Forschungszentrum Julich, ICG 2, D-52425 Julich, Germany
[5] Cornell Univ, Ithaca, NY 14853 USA
[6] Univ Paris 06, GMES France Atmosphere, Serv Aeron, INSU,CNRS, F-75252 Paris, France
[7] CNRS, UVSQ, IPSL, CEA,Lab Sci Climat & Environm, F-91191 Gif Sur Yvette, France
[8] Univ Edinburgh, Sch GeoSci, Edinburgh EH9 3JN, Midlothian, Scotland
[9] Hadley Ctr, Met Off, Exeter EX1 3PB, Devon, England
[10] Columbia Univ, NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[11] Univ Cambridge, Dept Chem, Natl Ctr Atmospher Sci, Cambridge CB2 1EW, England
[12] Lawrence Livermore Natl Lab, Atmospher Earth & Energy Div, Livermore, CA 94551 USA
[13] Ecole Polytech Fed Lausanne, Lab Modelisat Chim Atmospher, CH-1015 Lausanne, Switzerland
[14] Univ Iowa, Coll Engn, Ctr Global & Reg Environm Res, Iowa City, IA 52242 USA
[15] NASA, Goddard Space Flight Ctr, UMBC Goddard Earth Sci & Technol Ctr, Greenbelt, MD 20771 USA
[16] Univ Oslo, Dept Geosci, N-0315 Oslo, Norway
[17] Environm Canada, Air Qual Res Div, Sci & Technol Branch, Toronto, ON, Canada
[18] European Sci Fdn, Life Earth & Environm Sci, F-67080 Strasbourg, France
[19] Univ Wisconsin, Ctr Sustainabil & Global Environm, Nelson Inst Environm Studies, Madison, WI 53726 USA
[20] Seoul Natl Univ, Sch Earth & Environm Sci, Seoul 151742, South Korea
[21] Norwegian Meteorol Inst, Oslo, Norway
[22] York Univ, Ctr Res Earth & Space Sci, Toronto, ON M3J 1P3, Canada
[23] US EPA, Off Air & Radiat, Washington, DC 20460 USA
[24] Univ Aquila, Dept Phys, I-67100 Laquila, Italy
[25] CIEMAT, Atmospher Pollut Unit, E-28040 Madrid, Spain
[26] Northrop Grumman Corp, Atmospher Effects Grp, Chantilly, VA 20151 USA
[27] Commiss European Communities, Environm Directorate Gen, B-1049 Brussels, Belgium
[28] Harvard Univ, Atmospher Chem Modeling Grp, Cambridge, MA 02138 USA
关键词
EASTERN UNITED-STATES; MICS-ASIA-II; TROPOSPHERIC OZONE; SURFACE OZONE; AIR-POLLUTION; MACE-HEAD; BACKGROUND OZONE; CARBON-MONOXIDE; SEASONAL CYCLES; TRANSPORT;
D O I
10.1029/2008JD010816
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Understanding the surface O-3 response over a "receptor" region to emission changes over a foreign "source" region is key to evaluating the potential gains from an international approach to abate ozone (O-3) pollution. We apply an ensemble of 21 global and hemispheric chemical transport models to estimate the spatial average surface O-3 response over east Asia (EA), Europe (EU), North America (NA), and south Asia (SA) to 20% decreases in anthropogenic emissions of the O-3 precursors, NOx, NMVOC, and CO (individually and combined), from each of these regions. We find that the ensemble mean surface O-3 concentrations in the base case (year 2001) simulation matches available observations throughout the year over EU but overestimates them by > 10 ppb during summer and early fall over the eastern United States and Japan. The sum of the O-3 responses to NOx, CO, and NMVOC decreases separately is approximately equal to that from a simultaneous reduction of all precursors. We define a continental-scale "import sensitivity" as the ratio of the O-3 response to the 20% reductions in foreign versus "domestic" (i.e., over the source region itself) emissions. For example, the combined reduction of emissions from the three foreign regions produces an ensemble spatial mean decrease of 0.6 ppb over EU (0.4 ppb from NA), less than the 0.8 ppb from the reduction of EU emissions, leading to an import sensitivity ratio of 0.7. The ensemble mean surface O-3 response to foreign emissions is largest in spring and late fall (0.7-0.9 ppb decrease in all regions from the combined precursor reductions in the three foreign regions), with import sensitivities ranging from 0.5 to 1.1 (responses to domestic emission reductions are 0.8-1.6 ppb). High O-3 values are much more sensitive to domestic emissions than to foreign emissions, as indicated by lower import sensitivities of 0.2 to 0.3 during July in EA, EU, and NA when O-3 levels are typically highest and by the weaker relative response of annual incidences of daily maximum 8-h average O-3 above 60 ppb to emission reductions in a foreign region(< 10-20% of that to domestic) as compared to the annual mean response (up to 50% of that to domestic). Applying the ensemble annual mean results to changes in anthropogenic emissions from 1996 to 2002, we estimate a Northern Hemispheric increase in background surface O-3 of about 0.1 ppb a(-1), at the low end of the 0.1-0.5 ppb a(-1) derived from observations. From an additional simulation in which global atmospheric methane was reduced, we infer that 20% reductions in anthropogenic methane emissions from a foreign source region would yield an O-3 response in a receptor region that roughly equals that produced by combined 20% reductions of anthropogenic NOx, NMVOC, and CO emissions from the foreign source
引用
收藏
页数:21
相关论文
共 50 条
  • [21] VOC source-receptor relationships in Houston during TexAQS-II
    Leuchner, Michael
    Rappenglueck, Bernhard
    ATMOSPHERIC ENVIRONMENT, 2010, 44 (33) : 4056 - 4067
  • [22] The development of a model to examine source-receptor relationships for visibility on the Colorado Plateau
    Venkatram, A
    Karamchandani, P
    Pai, P
    Sloane, C
    Saxena, P
    Goldstein, R
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 1997, 47 (03): : 286 - 301
  • [23] Source-receptor relationships for atmospheric mercury deposition in the context of global change
    Zhang, Huanxin
    Wu, Shiliang
    Leibensperger, Eric M.
    ATMOSPHERIC ENVIRONMENT, 2021, 254 (254)
  • [24] ON THE EULERIAN SOURCE-RECEPTOR RELATIONSHIP
    HSU, HM
    CHANG, JS
    JOURNAL OF ATMOSPHERIC CHEMISTRY, 1987, 5 (01) : 103 - 124
  • [25] Source-Receptor Relationships Between Precursor Emissions and O3 and PM2.5 Air Pollution Impacts
    Baker, Kirk R.
    Simon, Heather
    Henderson, Barron
    Tucker, Colby
    Cooley, David
    Zinsmeister, Emma
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (39) : 14626 - 14637
  • [26] A new approach to design source-receptor relationships for air quality modelling
    Clappier, A.
    Pisoni, E.
    Thunis, P.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2015, 74 : 66 - 74
  • [27] Intercontinental Impacts of Ozone Pollution on Human Mortality
    Anenberg, Susan Casper
    West, J. Jason
    Fiore, Arlene M.
    Jaffe, Daniel A.
    Prather, Michael J.
    Bergmann, Daniel
    Cuvelier, Kees
    Dentener, Frank J.
    Duncan, Bryan N.
    Gauss, Michael
    Hess, Peter
    Jonson, Jan Eiof
    Lupu, Alexandru
    MacKenzie, Ian A.
    Marmer, Elina
    Park, Rokjin J.
    Sanderson, Michael G.
    Schultz, Martin
    Shindell, Drew T.
    Szopa, Sophie
    Garcia Vivanco, Marta
    Wild, Oliver
    Zang, Guang
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (17) : 6482 - 6487
  • [28] Intercontinental source attribution of ozone pollution at western US sites using an adjoint method
    Zhang, Lin
    Jacob, Daniel J.
    Kopacz, Monika
    Henze, Daven K.
    Singh, Kumaresh
    Jaffe, Daniel A.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36
  • [29] Monthly Characteristics and Source-Receptor Relationships of Anthropogenic Total Nitrate in Northeast Asia
    Kang, Moon-Seok
    Park, Da-Som
    Chae, Chan-Byeong
    Sunwoo, Young
    Hong, Ki-Ho
    ATMOSPHERE, 2024, 15 (09)
  • [30] A preliminary look at source-receptor relationships in the Texas-Mexico border area
    Gebhart, KA
    Malm, WC
    Flores, M
    JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2000, 50 (05) : 858 - 868