Stochastic Evolution Equations in Portfolio Credit Modelling

被引:37
|
作者
Bush, N. [1 ]
Hambly, B. M. [1 ]
Haworth, H. [2 ]
Jin, L. [1 ]
Reisinger, C. [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
[2] Credit Suisse, London E14 4QJ, England
来源
关键词
stochastic partial differential equations; credit derivatives; collateralized debt obligations; TERM STRUCTURE; DERIVATIVES; VALUATION; SPREADS;
D O I
10.1137/100796777
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We consider a structural credit model for a large portfolio of credit risky assets where the correlation is due to a market factor. By considering the large portfolio limit of this system we show the existence of a density process for the asset values. This density evolves according to a stochastic partial differential equation, and we establish existence and uniqueness for the solution taking values in a suitable function space. The loss function of the portfolio is then a function of the evolution of this density at the default boundary. We develop numerical methods for pricing and calibration of the model to credit indices and consider its performance before and after the credit crunch.
引用
收藏
页码:627 / 664
页数:38
相关论文
共 50 条
  • [42] Uncovering the mesoscale structure of the credit default swap market to improve portfolio risk modelling
    Anagnostou, I.
    Squartini, T.
    Kandhai, D.
    Garlaschelli, D.
    QUANTITATIVE FINANCE, 2021, 21 (09) : 1501 - 1518
  • [43] Random attractors for singular stochastic evolution equations
    Gess, Benjamin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (03) : 524 - 559
  • [44] Stochastic evolution equations in UMD Banach spaces
    van Neerven, J. M. A. M.
    Veraar, M. C.
    Weis, L.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (04) : 940 - 993
  • [45] Stochastic evolution equations with fractional Brownian motion
    S. Tindel
    C.A. Tudor
    F. Viens
    Probability Theory and Related Fields, 2003, 127 : 186 - 204
  • [46] Stochastic evolution equations with fractional Brownian motion
    Tindel, S
    Tudor, CA
    Viens, E
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 127 (02) : 186 - 204
  • [47] Small Time Asymptotics for Stochastic Evolution Equations
    Terence Jegaraj
    Journal of Theoretical Probability, 2011, 24 : 756 - 788
  • [48] Practical Stability of Stochastic Delay Evolution Equations
    Tomás Caraballo
    Mohamed Ali Hammami
    Lassad Mchiri
    Acta Applicandae Mathematicae, 2016, 142 : 91 - 105
  • [49] Stochastic Evolution of Augmented Born–Infeld Equations
    Darryl D. Holm
    Journal of Nonlinear Science, 2019, 29 : 115 - 138
  • [50] Stochastic evolution equations with rough boundary noise
    Neamtu, Alexandra
    Seitz, Tim
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2023, 4 (06):