Methods to Test Visual Attention Online

被引:9
|
作者
Yung, Amanda [1 ]
Cardoso-Leite, Pedro [2 ]
Dale, Gillian [3 ]
Bavelier, Daphne [2 ,4 ]
Green, C. Shawn [3 ]
机构
[1] Univ Rochester, Ctr Visual Sci, Rochester, NY 14627 USA
[2] Univ Geneva, Fac Psychol & Educ Sci, CH-1211 Geneva 4, Switzerland
[3] Univ Wisconsin, Dept Psychol, Madison, WI 53706 USA
[4] Univ Rochester, Dept Brain & Cognit Sci, Rochester, NY 14627 USA
来源
基金
美国国家科学基金会; 美国国家卫生研究院; 瑞士国家科学基金会;
关键词
Behavior; Issue; 96; visual attention; web-based assessment; computer-based assessment; visual search; multiple object tracking;
D O I
10.3791/52470
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Online data collection methods have particular appeal to behavioral scientists because they offer the promise of much larger and much more representative data samples than can typically be collected on college campuses. However, before such methods can be widely adopted, a number of technological challenges must be overcome - in particular in experiments where tight control over stimulus properties is necessary. Here we present methods for collecting performance data on two tests of visual attention. Both tests require control over the visual angle of the stimuli (which in turn requires knowledge of the viewing distance, monitor size, screen resolution, etc.) and the timing of the stimuli (as the tests involve either briefly flashed stimuli or stimuli that move at specific rates). Data collected on these tests from over 1,700 online participants were consistent with data collected in laboratory-based versions of the exact same tests. These results suggest that with proper care, timing/stimulus size dependent tasks can be deployed in web-based settings.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A novel test for evaluating horses’ spontaneous visual attention is predictive of attention in operant learning tasks
    C. Rochais
    M. Sébilleau
    M. Houdebine
    P. Bec
    M. Hausberger
    S. Henry
    The Science of Nature, 2017, 104
  • [32] The DiViSA's Predictive Validity by Age: An Objective Online Test of Attention
    Santacreu, J.
    Quiroga, M. A.
    SPANISH JOURNAL OF PSYCHOLOGY, 2015, 18
  • [33] Application of machine learning methods to online test error detection in semiconductor test
    Kirmse, Matthias
    Petersohn, Uwe
    Paffrath, Elief
    World Academy of Science, Engineering and Technology, 2010, 70 : 383 - 389
  • [34] Discriminative learning of online appearance modeling methods for visual tracking
    Zhongming Liao
    Xiuhong Xu
    Zhaosheng Xu
    Azlan Ismail
    Journal of Optics, 2024, 53 : 1129 - 1136
  • [35] Embedded processing methods for online visual analysis of laser welding
    Olli Lahdenoja
    Tero Säntti
    Jonne K. Poikonen
    Mika Laiho
    Ari Paasio
    Joonas Pekkarinen
    Antti Salminen
    Journal of Real-Time Image Processing, 2019, 16 : 1099 - 1116
  • [36] Discriminative learning of online appearance modeling methods for visual tracking
    Liao, Zhongming
    Xu, Xiuhong
    Xu, Zhaosheng
    Ismail, Azlan
    JOURNAL OF OPTICS-INDIA, 2024, 53 (02): : 1129 - 1136
  • [37] Webcam Eye Tracking for Monitoring Visual Attention in Hypothetical Online Shopping Tasks
    Schroeter, Iris
    Grillo, Nico Rolf
    Limpak, Margarethe Kristine
    Mestiri, Bilel
    Osthold, Benedikt
    Sebti, Fourat
    Mergenthaler, Marcus
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [38] Embedded processing methods for online visual analysis of laser welding
    Lahdenoja, Olli
    Santti, Tero
    Poikonen, Jonne K.
    Laiho, Mika
    Paasio, Ari
    Pekkarinen, Joonas
    Salminen, Antti
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (04) : 1099 - 1116
  • [39] The effect of picture attributes of online ordering pages on visual attention and user experience
    Dong, Yifan
    Huang, Yanqun
    Hu, Pingwang
    Zhang, Peng
    Wang, Yuzhen
    INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 2023, 96
  • [40] Modelling visual attention: Putting a saliency model of eye guidance to a test
    Koesling, H.
    Friesen, R.
    Hammer, S.
    Lier, F.
    Preuss, T.
    PERCEPTION, 2009, 38 : 182 - 182