ADAPTIVE DISCONTINUOUS GALERKIN APPROXIMATION OF OPTIMAL CONTROL PROBLEMS GOVERNED BY TRANSIENT CONVECTION-DIFFUSION EQUATIONS

被引:1
|
作者
Yucel, Hamdullah [1 ]
Stoll, Martin [2 ]
Benner, Peter [3 ]
机构
[1] Middle East Tech Univ, Inst Appl Math, TR-06800 Ankara, Turkey
[2] Tech Univ Chemnitz, Fac Math, Reichenhainer Str 41, D-09126 Chemnitz, Germany
[3] Max Planck Inst Dynam Complex Tech Syst, Computat Methods Syst & Control Theory, Sandtorstr 1, D-39106 Magdeburg, Germany
关键词
optimal control problem; a posteriori error estimate; discontinuous Galerkin method; convection diffusion equations; FINITE-ELEMENT-METHOD; CONSTRAINED OPTIMIZATION; ERROR ANALYSIS; A-PRIORI; VARIATIONAL DISCRETIZATION; SIPG METHOD; REGULARIZATION;
D O I
10.1553/etna_vol48s407
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate a posteriori error estimates of a control-constrained optimal control problem governed by a time-dependent convection diffusion equation. The control constraints are handled by using the primal-dual active set algorithm as a semi-smooth Newton method and by adding a Moreau-Yosida-type penalty function to the cost functional. Residual-based error estimators are proposed for both approaches. The derived error estimators are used as error indicators to guide the mesh refinements. A symmetric interior penalty Galerkin method in space and a backward Euler method in time are applied in order to discretize the optimization problem. Numerical results are presented, which illustrate the performance of the proposed error estimators.
引用
收藏
页码:407 / 434
页数:28
相关论文
共 50 条
  • [21] Alternating evolution discontinuous Galerkin methods for convection-diffusion equations
    Liu, Hailiang
    Pollack, Michael
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 307 : 574 - 592
  • [22] The discontinuous Galerkin method for fractional degenerate convection-diffusion equations
    Simone Cifani
    Espen R. Jakobsen
    Kenneth H. Karlsen
    BIT Numerical Mathematics, 2011, 51 : 809 - 844
  • [23] Superconvergence of the direct discontinuous Galerkin method for convection-diffusion equations
    Cao, Waixiang
    Liu, Hailiang
    Zhang, Zhimin
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (01) : 290 - 317
  • [24] The discontinuous Galerkin method for fractional degenerate convection-diffusion equations
    Cifani, Simone
    Jakobsen, Espen R.
    Karlsen, Kenneth H.
    BIT NUMERICAL MATHEMATICS, 2011, 51 (04) : 809 - 844
  • [25] A Discontinuous Galerkin Method by Patch Reconstruction for Convection-Diffusion Problems
    Sun, Zhiyuan
    Liu, Jun
    Wang, Pei
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2020, 12 (03) : 729 - 747
  • [26] Analysis of a multiscale discontinuous Galerkin method for convection-diffusion problems
    Buffa, A.
    Hughes, T. J. R.
    Sangalli, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (04) : 1420 - 1440
  • [27] COMPACT AND STABLE DISCONTINUOUS GALERKIN METHODS FOR CONVECTION-DIFFUSION PROBLEMS
    Brdar, S.
    Dedner, A.
    Kloefkorn, R.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (01): : A263 - A282
  • [28] A Robust Discontinuous Galerkin Method for Solving Convection-diffusion Problems
    Zuo-zheng Zhang Zi-qing Xie~* Xia Tao College of Mathematics and Computer Science
    Acta Mathematicae Applicatae Sinica, 2008, (03) : 483 - 496
  • [29] A robust discontinuous Galerkin method for solving convection-diffusion problems
    Zuo-zheng Zhang
    Zi-qing Xie
    Xia Tao
    Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 483 - 496
  • [30] A robust discontinuous Galerkin method for solving convection-diffusion problems
    Zhang, Zuo-zheng
    Xie, Zi-qing
    Tao, Xia
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2008, 24 (03): : 483 - 496