On boundedness of (quasi-)convex integer optimization problems

被引:4
|
作者
Obuchowska, Wieslawa T. [1 ]
机构
[1] E Carolina Univ, Dept Math, Greenville, NC 27858 USA
关键词
Convex constrained integer programs; Boundedness; Existence of optimal solutions;
D O I
10.1007/s00186-007-0196-3
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we are concerned with the problem of boundedness and the existence of optimal solutions to the constrained integer optimization problem. We present necessary and sufficient conditions for boundedness of either a faithfully convex or quasi-convex polynomial function over the feasible set contained in Z(n), and defined by a system of faithfully convex inequality constraints and/or quasi-convex polynomial inequalities. The conditions for boundedness are provided in the form of an implementable algorithm, terminating after a finite number of iterations, showing that for the considered class of functions, the integer programming problem with nonempty feasible region is unbounded if and only if the associated continuous optimization problem is unbounded. We also prove that for a broad class of objective functions (which in particular includes polynomials with integer coefficients), an optimal solution set of the constrained integer problem is nonempty over any subset of Z(n).
引用
收藏
页码:445 / 467
页数:23
相关论文
共 50 条