Optimal heat transport solutions for Rayleigh-Benard convection

被引:30
|
作者
Sondak, David [1 ]
Smith, Leslie M. [1 ,2 ]
Waleffe, Fabian [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Engn Phys, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
Benard convection; computational methods; turbulent convection; TURBULENT THERMAL-CONVECTION; ENERGY-DISSIPATION; INCOMPRESSIBLE FLOWS; VARIATIONAL BOUNDS; DECOMPOSITION; NUMBERS;
D O I
10.1017/jfm.2015.615
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Steady flows that optimize heat transport are obtained for two-dimensional Rayleigh-Benard convection with no-slip horizontal walls for a variety of Prandtl numbers Pr and Rayleigh number up to Ra similar to 10(9). Power-law scalings of Nu similar to Ra-gamma are observed with gamma approximate to 0.31, where the Nusselt number Nu is a non-dimensional measure of the vertical heat transport. Any dependence of the scaling exponent on Pr is found to be extremely weak. On the other hand, the presence of two local maxima of Nu with different horizontal wavenumbers at the same Ra leads to the emergence of two different flow structures as candidates for optimizing the heat transport. For Pr. 7, optimal transport is achieved at the smaller maximal wavenumber. In these fluids, the optimal structure is a plume of warm rising fluid, which spawns left/right horizontal arms near the top of the channel, leading to downdraughts adjacent to the central updraught. For Pr > 7 at high enough Ra, the optimal structure is a single updraught lacking significant horizontal structure, and characterized by the larger maximal wavenumber.
引用
收藏
页码:565 / 595
页数:31
相关论文
共 50 条
  • [41] HEAT-TRANSFER ENHANCEMENT IN RAYLEIGH-BENARD CONVECTION
    DOMARADZKI, JA
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1989, 32 (12) : 2475 - 2483
  • [42] Exponentially growing solutions in homogeneous Rayleigh-Benard convection
    Calzavarini, E
    Doering, CR
    Gibbon, JD
    Lohse, D
    Tanabe, A
    Toschi, F
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [43] Heat transfer mechanisms in bubbly Rayleigh-Benard convection
    Oresta, Paolo
    Verzicco, Roberto
    Lohse, Detlef
    Prosperetti, Andrea
    ADVANCES IN TURBULENCE XII - PROCEEDINGS OF THE 12TH EUROMECH EUROPEAN TURBULENCE CONFERENCE, 2009, 132 : 355 - 357
  • [44] Heat transfer mechanisms in bubbly Rayleigh-Benard convection
    Oresta, Paolo
    Verzicco, Roberto
    Lohse, Detlef
    Prosperetti, Andrea
    PHYSICAL REVIEW E, 2009, 80 (02):
  • [45] Scaling in Rayleigh-Benard convection
    Lindborg, Erik
    JOURNAL OF FLUID MECHANICS, 2023, 956
  • [46] DYNAMICS OF THE RAYLEIGH-BENARD CONVECTION
    PLATTEN, JK
    LEGROS, JC
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 1980, 5 (04) : 243 - 254
  • [47] Multiphase Rayleigh-Benard convection
    Oresta, Paolo
    Fornarelli, Francesco
    Prosperetti, Andrea
    MECHANICAL ENGINEERING REVIEWS, 2014, 1 (01):
  • [48] Homogeneous rayleigh-benard convection
    Calzavarini, E.
    Lohse, D.
    Toschi, F.
    PROGRESS IN TURBULENCE II, 2007, 109 : 181 - +
  • [49] INTERMITTENCY IN RAYLEIGH-BENARD CONVECTION
    BERGE, P
    DUBOIS, M
    MANNEVILLE, P
    POMEAU, Y
    JOURNAL DE PHYSIQUE LETTRES, 1980, 41 (15): : L341 - L345
  • [50] Lagrangian coherent structures and their heat-transport mechanism in the turbulent Rayleigh-Benard convection
    Cheng, Hang
    Shen, Jie
    Zhang, YiZhao
    Zhou, Quan
    Chong, Kai Leong
    Liu, YuLu
    Lu, ZhiMing
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2022, 65 (04) : 966 - 976