De praeceptis ferendis: Air Quality Multi-model Ensembles

被引:0
|
作者
Kioutsioukis, Ioannis [1 ,2 ]
Galmarini, Stefano [1 ]
机构
[1] European Commiss, Joint Res Ctr, Inst Environm & Sustainabil, Air & Climate Unit, I-21027 Ispra, Italy
[2] Univ Patras, Dept Phys, Lab Atmospher Phys, Rion 26500, Greece
关键词
D O I
10.1007/978-3-319-24478-5_89
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Ensembles of air quality models have been shown to outperform single models in many cases. Starting from the theoretical evidence behind this empirical ascertainment, we present the conditions granting an ensemble superior to any single model. As those conditions are not systematically met, we also investigate two additional ensemble estimators for which a sound mathematical framework exists. In view of producing a single improved forecast out of the ensemble, the three candidate ensemble estimators, namely the unconditional ensemble mean, the weighted ensemble mean and the mean of the sub-ensemble with the right trade-off between accuracy and diversity, are evaluated against data generated in the context of AQMEII (Air Quality Model Evaluation International Initiative). The pitfalls of training such ensembles are investigated. Overall, following a proper training procedure, the sophisticated ensemble averaging techniques were shown to have higher skill compared to solely ensemble averaging forecasts.
引用
收藏
页码:553 / 556
页数:4
相关论文
共 50 条
  • [41] Probabilistic prediction of climate using multi-model ensembles: from basics to applications
    Palmer, TN
    Doblas-Reyes, FJ
    Hagedorn, R
    Weisheimer, A
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1463) : 1991 - 1998
  • [42] Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada
    Al Samouly, Aly
    Luong, Chanh Nien
    Li, Zhong
    Smith, Spencer
    Baetz, Brian
    Ghaith, Maysara
    ENVIRONMENTAL EARTH SCIENCES, 2018, 77 (13)
  • [43] Do Multi-Model Ensembles Improve Reconstruction Skill in Paleoclimate Data Assimilation?
    Parsons, Luke A.
    Amrhein, Daniel E.
    Sanchez, Sara C.
    Tardif, Robert
    Brennan, M. Kathleen
    Hakim, Gregory J.
    EARTH AND SPACE SCIENCE, 2021, 8 (04)
  • [44] Performance of multi-model ensembles for the simulation of temperature variability over Ontario, Canada
    Aly Al Samouly
    Chanh Nien Luong
    Zhong Li
    Spencer Smith
    Brian Baetz
    Maysara Ghaith
    Environmental Earth Sciences, 2018, 77
  • [45] Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability
    M. Rajeevan
    C. K. Unnikrishnan
    B. Preethi
    Climate Dynamics, 2012, 38 : 2257 - 2274
  • [46] Evaluation of the ENSEMBLES multi-model seasonal forecasts of Indian summer monsoon variability
    Rajeevan, M.
    Unnikrishnan, C. K.
    Preethi, B.
    CLIMATE DYNAMICS, 2012, 38 (11-12) : 2257 - 2274
  • [47] Erratum to: Climate change under aggressive mitigation: the ENSEMBLES multi-model experiment
    T. C. Johns
    J.-F. Royer
    I. Höschel
    H. Huebener
    E. Roeckner
    E. Manzini
    W. May
    J.-L. Dufresne
    O. H. Otterå
    D. P. van Vuuren
    D. Salas y Melia
    M. A. Giorgetta
    S. Denvil
    S. Yang
    P. G. Fogli
    J. Körper
    J. F. Tjiputra
    E. Stehfest
    C. D. Hewitt
    Climate Dynamics, 2011, 37 (5-6) : 1269 - 1270
  • [48] Origins of tropical-wide SST biases in CMIP multi-model ensembles
    Li, Gen
    Xie, Shang-Ping
    GEOPHYSICAL RESEARCH LETTERS, 2012, 39
  • [49] Multi-model multi-analysis ensembles in quasi-operational medium-range forecasting
    Mylne, KR
    Evans, RE
    Clark, RT
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2002, 128 (579) : 361 - 384
  • [50] Malaria early warnings based on seasonal climate forecasts from multi-model ensembles
    Thomson, MC
    Doblas-Reyes, FJ
    Mason, SJ
    Hagedorn, R
    Connor, SJ
    Phindela, T
    Morse, AP
    Palmer, TN
    NATURE, 2006, 439 (7076) : 576 - 579