Myshkis type oscillation criteria for second-order linear delay differential equations

被引:4
|
作者
Oplustil, Zdenek [1 ]
Sremr, Jiri [2 ]
机构
[1] Brno Univ Technol, Fac Mech Engn, Inst Math, Tech 2, Brno 61669, Czech Republic
[2] Acad Sci Czech Republic, Inst Math, Branch Brno, Brno 61662, Czech Republic
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 178卷 / 01期
关键词
Linear second-order delay differential equation; Oscillation criteria;
D O I
10.1007/s00605-014-0719-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New Myshkis type oscillation criteria for second-order linear delay differential equations are obtained which generalise and, under some natural additional assumptions, improve previously known results.
引用
收藏
页码:143 / 161
页数:19
相关论文
共 50 条
  • [11] Oscillation Criteria for Second-Order Nonlinear Neutral Delay Differential Equations
    Han, Zhenlai
    Li, Tongxing
    Sun, Shurong
    Chen, Weisong
    ADVANCES IN DIFFERENCE EQUATIONS, 2010,
  • [12] OSCILLATION FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAYOSCILLATION FOR SECOND-ORDER DIFFERENTIAL EQUATIONS WITH DELAY
    Baculikova, Blanka
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [13] Sharp oscillation criteria for second-order neutral delay differential equations
    Bohner, Martin
    Grace, Said R.
    Jadlovska, Irena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (17) : 10041 - 10053
  • [14] Oscillation criteria for a class of second-order neutral delay differential equations
    Karpuz, B.
    Manojlovic, J. V.
    Oecalan, Oe.
    Shoukaku, Y.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 210 (02) : 303 - 312
  • [15] Oscillation Criteria for Second-Order Nonlinear Neutral Delay Differential Equations
    Zhenlai Han
    Tongxing Li
    Shurong Sun
    Weisong Chen
    Advances in Difference Equations, 2010
  • [16] SOME OSCILLATION CRITERIA FOR THE SECOND-ORDER LINEAR DELAY DIFFERENTIAL EQUATION
    Oplustil, Zdenek
    Sremr, Jiri
    MATHEMATICA BOHEMICA, 2011, 136 (02): : 195 - 204
  • [17] On The Oscillation of Second-order Half-linear Delay Differential Equations
    Li, Tongxing
    Han, Zhenlai
    Zhang, Chenghui
    PROCEEDINGS OF THE 7TH CONFERENCE ON BIOLOGICAL DYNAMIC SYSTEM AND STABILITY OF DIFFERENTIAL EQUATION, VOLS I AND II, 2010, : 602 - 605
  • [18] Oscillation criteria for second-order half-linear differential equations
    Manojlovic, JV
    MATHEMATICAL AND COMPUTER MODELLING, 1999, 30 (5-6) : 109 - 119
  • [19] Interval criteria for oscillation of second-order linear ordinary differential equations
    Kong, Q
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) : 258 - 270
  • [20] OSCILLATION CRITERIA FOR SECOND-ORDER NONLINEAR DELAY EQUATIONS
    ERBE, L
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (01): : 49 - 56