Geolocated Data Generation and Protection Using Generative Adversarial Networks

被引:2
|
作者
Alatrista-Salas, Hugo [1 ]
Montalvo-Garcia, Peter [1 ]
Nunez-del-Prado, Miguel [2 ,3 ]
Salas, Julian [4 ,5 ]
机构
[1] Pontificia Univ Catolica Peru, Lima, Peru
[2] Univ Andina Cusco, Inst Invest, Cuzco, Peru
[3] Peru Res Dev & Innovat Ctr, Lima, Peru
[4] Univ Oberta Catalunya UOC, Internet Interdisciplinary Inst IN3, Barcelona, Spain
[5] Ctr Cybersecur Res Catalonia CYBERCAT, Barcelona, Spain
关键词
Differential privacy; Generative Adversarial Networks; Disclosure risk; Information loss; Synthetic trajectories; Privacy; PRIVACY;
D O I
10.1007/978-3-031-13448-7_7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data mining techniques allow us to discover patterns in large datasets. Nonetheless, data may contain sensitive information. This is especially true when data is georeferenced. Thus, an adversary could learn about individual whereabouts, points of interest, political affiliation, and even sexual habits. At the same time, human mobility is a rich source of information to analyze traffic jams, health care accessibility, food desserts, and even pandemics dynamics. Therefore, to enhance privacy, we study the use of Deep Learning techniques such as Generative Adversarial Network (GAN) and GAN with Differential Privacy (DP-GAN) to generate synthetic data with formal privacy guarantees. Our experiments demonstrate that we can generate synthetic data to maintain individuals' privacy and data quality depending on privacy parameters. Accordingly, based on the privacy settings, we generated data differing a few meters and a few kilometers from the original trajectories. After generating fine-grain mobility trajectories at the GPS level through an adversarial neural networks approach and using GAN to sanitize the original trajectories together with differential privacy, we analyze the privacy provided from the perspective of anonymization literature. We show that such epsilon-differentially private data may still have a risk of re-identification.
引用
收藏
页码:80 / 91
页数:12
相关论文
共 50 条
  • [1] Geolocated Data Generation and Protection Using Generative Adversarial Networks
    Alatrista-Salas, Hugo
    Montalvo-Garcia, Peter
    Nunez-del-Prado, Miguel
    Salas, Julián
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2022, 13408 LNAI : 80 - 91
  • [2] An overview of biological data generation using generative adversarial networks
    Liu, Lin
    Xia, Yujing
    Tang, Lin
    2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 141 - 144
  • [3] Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
    Nik, Alireza Hossein Zadeh
    Riegler, Michael A.
    Halvorsen, Pal
    Storas, Andrea M.
    MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 434 - 446
  • [4] Generation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Nepomuceno-Chamorro, Isabel
    LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) : 252 - 262
  • [5] Effective data generation for imbalanced learning using conditional generative adversarial networks
    Douzas, Georgios
    Bacao, Fernando
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 464 - 471
  • [6] Medical Time-Series Data Generation Using Generative Adversarial Networks
    Dash, Saloni
    Yale, Andrew
    Guyon, Isabelle
    Bennett, Kristin P.
    ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 382 - 391
  • [7] Generation of False Data Injection Attacks using Conditional Generative Adversarial Networks
    Mohammadpourfard, Mostafa
    Ghanaatpishe, Fateme
    Mohammadi, Marziyeh
    Lakshminarayana, Subhash
    Pechenizkiy, Mykola
    2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 41 - 45
  • [8] Procedural Terrain Generation Using Generative Adversarial Networks
    Voulgaris, Georgios
    Mademlis, Ioannis
    Pitas, Ioannis
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 686 - 690
  • [9] DOOM Level Generation using Generative Adversarial Networks
    Giacomello, Edoardo
    Lanzi, Pier Luca
    Loiacono, Daniele
    2018 IEEE GAMES, ENTERTAINMENT, MEDIA CONFERENCE (GEM), 2018, : 316 - 323
  • [10] A survey on text generation using generative adversarial networks
    de Rosa, Gustavo H.
    Papa, Joao P.
    PATTERN RECOGNITION, 2021, 119