Geolocated Data Generation and Protection Using Generative Adversarial Networks

被引:0
|
作者
Alatrista-Salas, Hugo [1 ]
Montalvo-Garcia, Peter [1 ]
Nunez-del-Prado, Miguel [2 ,3 ]
Salas, Julián [4 ,5 ]
机构
[1] Pontificia Universidad Católica del Perú, Lima, Peru
[2] Instituto de Investigación de la Universidad Andina del Cusco, Cusco, Peru
[3] Peru Research, Development, and Innovation Center, Lima, Peru
[4] Internet Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya (UOC), Barcelona, Spain
[5] Center for Cybersecurity Research of Catalonia (CYBERCAT), Barcelona, Spain
关键词
461.4 Ergonomics and Human Factors Engineering - 723.2 Data Processing and Image Processing - 723.4 Artificial Intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
26
引用
收藏
页码:80 / 91
相关论文
共 50 条
  • [1] Geolocated Data Generation and Protection Using Generative Adversarial Networks
    Alatrista-Salas, Hugo
    Montalvo-Garcia, Peter
    Nunez-del-Prado, Miguel
    Salas, Julian
    [J]. MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2022, 2022, 13408 : 80 - 91
  • [2] An overview of biological data generation using generative adversarial networks
    Liu, Lin
    Xia, Yujing
    Tang, Lin
    [J]. 2020 IEEE CONFERENCE ON TELECOMMUNICATIONS, OPTICS AND COMPUTER SCIENCE (TOCS), 2020, : 141 - 144
  • [3] Generation of Synthetic Tabular Healthcare Data Using Generative Adversarial Networks
    Nik, Alireza Hossein Zadeh
    Riegler, Michael A.
    Halvorsen, Pal
    Storas, Andrea M.
    [J]. MULTIMEDIA MODELING, MMM 2023, PT I, 2023, 13833 : 434 - 446
  • [4] Generation of Synthetic Data with Conditional Generative Adversarial Networks
    Vega-Marquez, Belen
    Rubio-Escudero, Cristina
    Nepomuceno-Chamorro, Isabel
    [J]. LOGIC JOURNAL OF THE IGPL, 2022, 30 (02) : 252 - 262
  • [5] Effective data generation for imbalanced learning using conditional generative adversarial networks
    Douzas, Georgios
    Bacao, Fernando
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2018, 91 : 464 - 471
  • [6] Medical Time-Series Data Generation Using Generative Adversarial Networks
    Dash, Saloni
    Yale, Andrew
    Guyon, Isabelle
    Bennett, Kristin P.
    [J]. ARTIFICIAL INTELLIGENCE IN MEDICINE (AIME 2020), 2020, : 382 - 391
  • [7] Generation of False Data Injection Attacks using Conditional Generative Adversarial Networks
    Mohammadpourfard, Mostafa
    Ghanaatpishe, Fateme
    Mohammadi, Marziyeh
    Lakshminarayana, Subhash
    Pechenizkiy, Mykola
    [J]. 2020 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE (ISGT-EUROPE 2020): SMART GRIDS: KEY ENABLERS OF A GREEN POWER SYSTEM, 2020, : 41 - 45
  • [8] Procedural Terrain Generation Using Generative Adversarial Networks
    Voulgaris, Georgios
    Mademlis, Ioannis
    Pitas, Ioannis
    [J]. 29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 686 - 690
  • [9] DOOM Level Generation using Generative Adversarial Networks
    Giacomello, Edoardo
    Lanzi, Pier Luca
    Loiacono, Daniele
    [J]. 2018 IEEE GAMES, ENTERTAINMENT, MEDIA CONFERENCE (GEM), 2018, : 316 - 323
  • [10] Cast Shadow Generation Using Generative Adversarial Networks
    Taif, Khasrouf
    Ugail, Hassan
    Mehmood, Irfan
    [J]. COMPUTATIONAL SCIENCE - ICCS 2020, PT V, 2020, 12141 : 481 - 495