Solution of linearized Ginzburg-Landau problem for mesoscopic superconductors by conformal mapping

被引:1
|
作者
Pereira, Paulo J. [1 ]
Moshchalkov, Victor V. [1 ]
Chibotaru, Liviu F.
机构
[1] Katholieke Univ Leuven, INPAC Inst Nanoscale Phys & Chem, B-3001 Louvain, Belgium
关键词
ANTIVORTICES; NUCLEATION;
D O I
10.1088/1742-6596/410/1/012162
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present a new method for the solution of linearized Ginzburg-Landau problem for mesoscopic superconducting nanostructures of arbitrary shapes in applied magnetic field. The method is based on the conformal mapping of the analytical solution for the disk and uses a specially designed superconducting gauge for the vector potential corresponding to the magnetic field. As a demonstration of the methods accuracy, we calculate the distribution of the order parameter in superconducting regular polygons and compare the obtained solutions with the available numerical results. We further consider an example of irregular polygon and show the evolution of the vortex patterns in function of the geometry of samples boundary. The obtained results will be compared with available experimental data on mesoscopic and nanoscopic superconductors.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Analytical solution of the Ginzburg-Landau equation
    Wellot, Yanick Alain Servais
    Nkaya, Gires Dimitri
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (04): : 1750 - 1759
  • [32] Rigorous Computation of a Radially Symmetric Localized Solution in a Ginzburg-Landau Problem
    van den Berg, J. B.
    Groothedde, C. M.
    Williams, J. F.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2015, 14 (01): : 423 - 447
  • [33] GINZBURG-LANDAU PARAMETERS OF TYPE-2 SUPERCONDUCTORS
    MCCONVILLE, T
    SERIN, B
    PHYSICAL REVIEW, 1965, 140 (4A): : 1169 - +
  • [34] What is the Dual Ginzburg-Landau Theory for Holographic Superconductors?
    Natsuume, Makoto
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2025, 2025 (02):
  • [35] Internal Model Controller Design of Linearized Ginzburg-Landau Equation
    Xie, Junyao
    Koch, Charles Robert
    Dubljevic, Stevan
    IFAC PAPERSONLINE, 2020, 53 (02): : 7728 - 7733
  • [36] GENERALIZED GINZBURG-LANDAU THEORY FOR THE MAGNETOSTATICS OF FERROMAGNETIC SUPERCONDUCTORS
    GREWE, N
    SCHUH, B
    PHYSICAL REVIEW B, 1980, 22 (07): : 3183 - 3193
  • [37] Boundary control of the linearized Ginzburg-Landau model of vortex shedding
    Aamo, OM
    Smyshlyaev, A
    Krstic, M
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2005, 43 (06) : 1953 - 1971
  • [38] Generalized Ginzburg-Landau theory for nonuniform FFLO superconductors
    Buzdin, AI
    Kachkachi, H
    PHYSICS LETTERS A, 1997, 225 (4-6) : 341 - 348
  • [39] GINZBURG-LANDAU THEORY OF ELECTROMAGNETIC EFFECTS IN MAGNETIC SUPERCONDUCTORS
    JARIC, MV
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 233 - 233
  • [40] GINZBURG-LANDAU THEORY OF SHEAR MODULI IN ANISOTROPIC SUPERCONDUCTORS
    PETZINGER, KG
    TUTTLE, B
    PHYSICAL REVIEW B, 1993, 47 (05): : 2909 - 2912