Nontrivial Solutions for Schrodinger Equation with Local Super-Quadratic Conditions

被引:63
|
作者
Tang, Xianhua [1 ]
Lin, Xiaoyan [2 ]
Yu, Jianshe [3 ]
机构
[1] Cent S Univ, Sch Math & Stat, Changsha 410083, Hunan, Peoples R China
[2] Huaihua Coll, Dept Math, Huaihua 418008, Hunan, Peoples R China
[3] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510005, Guangdong, Peoples R China
关键词
Schrodinger equation; Superlinear; Asymptotically linear; Local super-quadratic conditions; MULTIPLE SOLUTIONS; ELLIPTIC PROBLEMS; GROUND-STATES;
D O I
10.1007/s10884-018-9662-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is dedicated to studying the semilinear Schrodinger equation - u + V(x) u = f (x, u), x. RN, u. H1(RN), where V. C(RN, R) is sign- changing and either periodic or coercive and f. C(RN xR, R) is subcritical and local super- linear (i. e. allowed to be super- linear at some x. RN and asymptotically linear at other x. RN). Instead of the common condition that lim| t|.8 t 0 f (x, s) ds t2 = 8 uniformly in x. RN, we use a local super- quadratic condition lim| t|.8 t 0 f (x, s) ds t2 =8 a. e. x. G for some domain G. RN to show the existence of nontrivial solutions for the above problem.
引用
收藏
页码:369 / 383
页数:15
相关论文
共 50 条
  • [31] Multiplicity of Periodic Solutions for a Class of New Super-quadratic Damped Vibration Problems
    Jiang, Shan
    Xu, Huijuan
    Liu, Guanggang
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2023, 29 (04) : 1287 - 1297
  • [32] Multiplicity of Periodic Solutions for a Class of New Super-quadratic Damped Vibration Problems
    Shan Jiang
    Huijuan Xu
    Guanggang Liu
    Journal of Dynamical and Control Systems, 2023, 29 : 1287 - 1297
  • [33] BRAKE ORBITS OF SUPER-QUADRATIC HAMILTONIAN SYSTEMS
    Xing, Jiamin
    Yang, Xue
    Li, Yong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 2179 - 2185
  • [34] Multidimensional Markovian FBSDEs with super-quadratic growth
    Kupper, Michael
    Luo, Peng
    Tangpi, Ludovic
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (03) : 902 - 923
  • [35] Super-quadratic convergence in Aitken Δ2 process
    Kazufumi Ozawa
    Japan Journal of Industrial and Applied Mathematics, 2004, 21 : 289 - 298
  • [36] Multiplicity and minimality of periodic solutions to fourth-order super-quadratic difference systems
    Ling, Rumin
    Lu, Mingxi
    Feng, Yuncheng
    Xiao, Huafeng
    OPEN MATHEMATICS, 2022, 20 (01): : 1629 - 1641
  • [37] Periodic solutions for non-autonomous Hamiltonian systems possessing super-quadratic potentials
    Xu, XJ
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (06) : 941 - 955
  • [38] ON SOLUTIONS OF LOCAL FRACTIONAL SCHRODINGER EQUATION
    Yilmazer, Resat
    Demirel, Neslihan S.
    THERMAL SCIENCE, 2019, 23 (S1929-S1934): : S1929 - S1934
  • [39] Super-Quadratic Upconversion Luminescence among Lanthanide Ions
    Carrasco, Irene
    Laversenne, Laetitia
    Bigotta, Stefano
    Toncelli, Alessandra
    Tonelli, Mauro
    Zagumennyi, Alexander, I
    Pollnau, Markus
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE & EUROPEAN QUANTUM ELECTRONICS CONFERENCE (CLEO/EUROPE-EQEC), 2019,
  • [40] Singular elliptic problem with super-quadratic growth in the gradient
    Boukarabila, Siham
    Primo, Ana
    Younes, Abdelbadie
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (11) : 1811 - 1827