Bernstein type inequalities for self-normalized martingales with applications

被引:0
|
作者
Fan, Xiequan [1 ]
Wang, Shen [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
Self-normalized martingales; exponential inequalities; autoregressive processes; EXPONENTIAL INEQUALITIES;
D O I
10.1080/02331888.2018.1550086
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For self-normalized martingales with conditionally symmetric differences, de la Pena [A general class of exponential inequalities for martingales and ratios. Ann Probab. 1999;27(1):537-564] established the Gaussian type exponential inequalities. Bercu and Touati [Exponential inequalities for self-normalized martingales with applications. Ann Appl Probab. 2008;18:1848-1869] extended de la Pena's inequalities to martingales with differences heavy on left. In this paper, we establish Bernstein type exponential inequalities for self-normalized martingales with differences bounded from below. Moreover, applications to t-statistics and autoregressive processes are discussed.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条