Behavior of Gaussian Curvature and Mean Curvature Near Non-degenerate Singular Points on Wave Fronts

被引:40
|
作者
Martins, L. F. [1 ]
Saji, K. [2 ]
Umehara, M. [3 ]
Yamada, K. [4 ]
机构
[1] IBILCE UNESP R Cristovao Colombo, Dept Matemat, Sao Jose Rio Preto, BR-2265 Sao Paulo 15054000, Brazil
[2] Kobe Univ, Fac Sci, Dept Math, Rokko, Kobe, Hyogo 6578501, Japan
[3] Tokyo Inst Technol, Dept Math & Comp Sci, Tokyo 1528552, Japan
[4] Tokyo Inst Technol, Dept Math, Tokyo 1528551, Japan
来源
关键词
Singularities; Wave front; Cuspidal edge; Swallowtail; Cuspidal cross cap; Gaussian curvature; Mean curvature; INFLECTION POINTS; SURFACES; GEOMETRY; R-3;
D O I
10.1007/978-4-431-56021-0_14
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define cuspidal curvature k(c) (resp. normalized cuspidal curvature mu(c)) along cuspidal edges (resp. at a swallowtail singularity) in Riemannian 3-manifolds, and show that it gives a coefficient of the divergent term of the mean curvature function. Moreover, we show that the product k(Pi) called the product curvature (resp. mu(Pi) called normalized product curvature) of k(c)(resp. mu(c)) and the limiting normal curvature k(v) is an intrinsic invariant of the surface, and is closely related to the boundedness of the Gaussian curvature. We also consider the limiting behavior of k(Pi) when cuspidal edges accumulate to other singularities. Moreover, several new geometric invariants of cuspidal edges and swallowtails are given.
引用
收藏
页码:247 / 281
页数:35
相关论文
共 27 条