Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting

被引:53
|
作者
Hong, Wei-Chiang [1 ]
Fan, Guo-Feng [2 ]
机构
[1] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Ping Ding Shan Univ, Sch Math & Stat, Ping Ding Shan 467000, Henan, Peoples R China
来源
ENERGIES | 2019年 / 12卷 / 06期
关键词
empirical mode decomposition (EMD); particle swarm optimization (PSO) algorithm; intrinsic mode function (IMF); support vector regression (SVR); short term load forecasting; FUZZY TIME-SERIES; NEURAL-NETWORKS; ELECTRICITY CONSUMPTION; INTELLIGENT ALGORITHM; ENERGY-CONSUMPTION; SVR; OPTIMIZATION; EVOLUTIONARY; SELECTION;
D O I
10.3390/en12061093
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For operational management of power plants, it is desirable to possess more precise short-term load forecasting results to guarantee the power supply and load dispatch. The empirical mode decomposition (EMD) method and the particle swarm optimization (PSO) algorithm have been successfully hybridized with the support vector regression (SVR) to produce satisfactory forecasting performance in previous studies. Decomposed intrinsic mode functions (IMFs), could be further defined as three items: item A contains the random term and the middle term; item B contains the middle term and the trend (residual) term, and item C contains the middle terms only, where the random term represents the high-frequency part of the electric load data, the middle term represents the multiple-frequency part, and the trend term represents the low-frequency part. These three items would be modeled separately by the SVR-PSO model, and the final forecasting results could be calculated as A+B-C (the defined item D). Consequently, this paper proposes a novel electric load forecasting model, namely H-EMD-SVR-PSO model, by hybridizing these three defined items to improve the forecasting accuracy. Based on electric load data from the Australian electricity market, the experimental results demonstrate that the proposed H-EMD-SVR-PSO model receives more satisfied forecasting performance than other compared models.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Short-term load forecasting based on support vector machines regression
    Zhang, MG
    Proceedings of 2005 International Conference on Machine Learning and Cybernetics, Vols 1-9, 2005, : 4310 - 4314
  • [22] Subsampled support vector regression ensemble for short term electric load forecasting
    Li, Yanying
    Che, Jinxing
    Yang, Youlong
    ENERGY, 2018, 164 : 160 - 170
  • [23] Application of Support Vector Regression in Power System Short Term Load Forecasting
    Jiang, Huilan
    Yu, Xiaoming
    Yu, Yaozhou
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 26 - +
  • [24] Short Term Load Forecasting with Least Square Support Vector Regression and PSO
    Zou Min
    Tao Huanqi
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL V, 2010, : 79 - 82
  • [25] A Strategy for Short-Term Load Forecasting by Support Vector Regression Machines
    Ceperic, Ervin
    Ceperic, Vladimir
    Baric, Adrijan
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (04) : 4356 - 4364
  • [26] Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression
    Nava, Noemi
    Di Matteo, Tiziana
    Aste, Tomaso
    RISKS, 2018, 6 (01)
  • [27] Short-term electrical load forecasting using hybrid model of manta ray foraging optimization and support vector regression
    Li, Siwei
    Kong, Xiangyu
    Yue, Liang
    Liu, Chang
    Khan, Muhammad Ahmad
    Yang, Zhiduan
    Zhang, Honghui
    JOURNAL OF CLEANER PRODUCTION, 2023, 388
  • [28] Short-Term Load Forecasting Model Based on Online Sequential Extreme Support Vector Regression
    Jiang M.
    Gu D.
    Kong J.
    Tian Y.
    Jiang, Min (minjiang@jiangnan.edu.cn), 2018, Power System Technology Press (42): : 2240 - 2247
  • [29] Short term load forecasting model based on support vector machine
    Niu, Dong-Xiao
    Wang, Qiang
    Li, Jin-Chao
    ADVANCES IN MACHINE LEARNING AND CYBERNETICS, 2006, 3930 : 880 - 888
  • [30] Short-Term Load Forecasting of Microgrid via Hybrid Support Vector Regression and Long Short-Term Memory Algorithms
    Moradzadeh, Arash
    Zakeri, Sahar
    Shoaran, Maryam
    Mohammadi-Ivatloo, Behnam
    Mohammadi, Fazel
    SUSTAINABILITY, 2020, 12 (17)