Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting

被引:53
|
作者
Hong, Wei-Chiang [1 ]
Fan, Guo-Feng [2 ]
机构
[1] Jiangsu Normal Univ, Sch Comp Sci & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] Ping Ding Shan Univ, Sch Math & Stat, Ping Ding Shan 467000, Henan, Peoples R China
来源
ENERGIES | 2019年 / 12卷 / 06期
关键词
empirical mode decomposition (EMD); particle swarm optimization (PSO) algorithm; intrinsic mode function (IMF); support vector regression (SVR); short term load forecasting; FUZZY TIME-SERIES; NEURAL-NETWORKS; ELECTRICITY CONSUMPTION; INTELLIGENT ALGORITHM; ENERGY-CONSUMPTION; SVR; OPTIMIZATION; EVOLUTIONARY; SELECTION;
D O I
10.3390/en12061093
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
For operational management of power plants, it is desirable to possess more precise short-term load forecasting results to guarantee the power supply and load dispatch. The empirical mode decomposition (EMD) method and the particle swarm optimization (PSO) algorithm have been successfully hybridized with the support vector regression (SVR) to produce satisfactory forecasting performance in previous studies. Decomposed intrinsic mode functions (IMFs), could be further defined as three items: item A contains the random term and the middle term; item B contains the middle term and the trend (residual) term, and item C contains the middle terms only, where the random term represents the high-frequency part of the electric load data, the middle term represents the multiple-frequency part, and the trend term represents the low-frequency part. These three items would be modeled separately by the SVR-PSO model, and the final forecasting results could be calculated as A+B-C (the defined item D). Consequently, this paper proposes a novel electric load forecasting model, namely H-EMD-SVR-PSO model, by hybridizing these three defined items to improve the forecasting accuracy. Based on electric load data from the Australian electricity market, the experimental results demonstrate that the proposed H-EMD-SVR-PSO model receives more satisfied forecasting performance than other compared models.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A Hybrid Model by Empirical Mode Decomposition and Support Vector Regression for Tourist Arrivals Forecasting
    Lai, Ming-Cheng
    Yeh, Ching-Chiang
    Shieh, Lon-Fon
    [J]. JOURNAL OF TESTING AND EVALUATION, 2013, 41 (03) : 351 - 358
  • [2] Support Vector Regression Model Based on Empirical Mode Decomposition and Auto Regression for Electric Load Forecasting
    Fan, Guo-Feng
    Qing, Shan
    Wang, Hua
    Hong, Wei-Chiang
    Li, Hong-Juan
    [J]. ENERGIES, 2013, 6 (04) : 1887 - 1901
  • [3] A generalized regression model based on hybrid empirical mode decomposition and support vector regression with back-propagation neural network for mid-short-term load forecasting
    Fan, Guo-Feng
    Guo, Yan-Hui
    Zheng, Jia-Mei
    Hong, Wei-Chiang
    [J]. JOURNAL OF FORECASTING, 2020, 39 (05) : 737 - 756
  • [4] Energy Load Forecasting Using Empirical Mode Decomposition and Support Vector Regression
    Ghelardoni, Luca
    Ghio, Alessandro
    Anguita, Davide
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (01) : 549 - 556
  • [5] Short-Term Load Forecasting Using Ensemble Empirical Mode Decomposition and Harmony Search Optimized Support Vector Regression
    Ye, Jianhua
    Yang, Li
    [J]. PROCEEDINGS OF THE 2019 14TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2019), 2019, : 851 - 855
  • [6] A method for short term load forecasting using support vector regression model and hybrid evolutionary algorithm
    Wang, Xuan
    Lv, Jiake
    Wei, Chaofu
    Xie, Deti
    [J]. ICIC Express Letters, 2012, 6 (11): : 2933 - 2941
  • [7] A new hybrid Modified Firefly Algorithm and Support Vector Regression model for accurate Short Term Load Forecasting
    Kavousi-Fard, Abdollah
    Samet, Haidar
    Marzbani, Fatemeh
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (13) : 6047 - 6056
  • [8] Hybrid intelligent forecasting model based on empirical mode decomposition, support vector regression and adaptive linear neural network
    He, ZJ
    Hu, Q
    Zi, YY
    Zhang, ZS
    Chen, XF
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 2, PROCEEDINGS, 2005, 3611 : 324 - 327
  • [9] Empirical Mode Decomposition with Random Forest Model Based Short Term Load Forecasting
    Vaish J.
    Tiwari A.K.
    Seethalekshmi K.
    [J]. Distributed Generation and Alternative Energy Journal, 2022, 37 (04): : 1159 - 1190
  • [10] A New Hybrid Approach for Short-Term Electric Load Forecasting Applying Support Vector Machine with Ensemble Empirical Mode Decomposition and Whale Optimization
    Liu, Tongxiang
    Jin, Yu
    Gao, Yuyang
    [J]. ENERGIES, 2019, 12 (08)