Differential Privacy for Regularised Linear Regression

被引:6
|
作者
Dandekar, Ashish [1 ]
Basu, Debabrota [1 ]
Bressan, Stephane [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore, Singapore
基金
新加坡国家研究基金会;
关键词
Linear regression; Data privacy; Differential privacy; SELECTION;
D O I
10.1007/978-3-319-98812-2_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present epsilon-differentially private functional mechanisms for variants of regularised linear regression, LASSO, Ridge, and elastic net. We empirically and comparatively analyse their effectiveness. We quantify the error incurred by these epsilon-differentially private functional mechanisms with respect to the non-private linear regression. We show that the functional mechanism is more effective than the state-of-art differentially private mechanism using input perturbation for the three main regularised linear regression models. We also discuss caveats in the functional mechanism, such as non-convexity of the noisy loss function, which causes instability in the results.
引用
收藏
页码:483 / 491
页数:9
相关论文
共 50 条
  • [21] Privacy preserving linear regression modeling of distributed databases
    Weiwei Fang
    Changsheng Zhou
    Bingru Yang
    Optimization Letters, 2013, 7 : 807 - 818
  • [22] Input and Output Privacy-Preserving Linear Regression
    Aono, Yoshinori
    Hayashi, Takuya
    Phong, Le Trieu
    Wang, Lihua
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2017, E100D (10) : 2339 - 2347
  • [23] Toward practical privacy-preserving linear regression
    Xu, Wenju
    Wang, Baocang
    Liu, Jiasen
    Chen, Yange
    Duan, Pu
    Hong, Zhiyong
    INFORMATION SCIENCES, 2022, 596 (119-136) : 119 - 136
  • [24] Privacy preserving linear regression modeling of distributed databases
    Fang, Weiwei
    Zhou, Changsheng
    Yang, Bingru
    OPTIMIZATION LETTERS, 2013, 7 (04) : 807 - 818
  • [25] PDE-regularised spatial quantile regression
    Castiglione, Cristian
    Arnone, Eleonora
    Bernardi, Mauro
    Farcomeni, Alessio
    Sangalli, Laura M.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2025, 205
  • [26] Bayesian Differential Privacy for Linear Dynamical Systems
    Sugiura, Genki
    Ito, Kaito
    Kashima, Kenji
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 896 - 901
  • [27] Linear Queries Estimation with Local Differential Privacy
    Bassily, Raef
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89 : 721 - 729
  • [28] Generalized Linear Bandits with Local Differential Privacy
    Han, Yuxuan
    Liang, Zhipeng
    Wang, Yang
    Zhang, Jiheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] Co-Regularised Support Vector Regression
    Ullrich, Katrin
    Kamp, Michael
    Gaertner, Thomas
    Vogt, Martin
    Wrobel, Stefan
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT II, 2017, 10535 : 338 - 354
  • [30] Logistic Regression Matrix Factorization Recommendation Algorithm for Differential Privacy
    Du M.
    Peng J.
    Hu Y.
    Xiao L.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2023, 46 (03): : 115 - 120